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Modeling of anisotropic behavior as well as hardening behavior based on mi-
cromechanical quantities in combination with a spectral solver is the focus of this
study. A deep drawing steel as well as two different aluminum alloys are investigated.
Prediction capabilities of the proposed modeling strategy are discussed and the bene-
fits of the micromechanical model are highlighted. Further, a comparison of the crys-
tal plasticity (CP) results with the well established macroscopic model YLD2000-2d
underlines the importance of the CP as a complementary modeling technique to the
macroscopic modeling. Both models – the microscopic as well as the macroscopic – are
validated on experimental data mainly gained from uniaxial and biaxial tests. In the
second part of this study, strong inhomogeneous microstructures are investigated from
a modeling point of view. For this purpose, a Hall–Petch phenomenological model is
implemented in the CP open-source code DAMASK to take the grain size effects into
account. Appropriate combinations of the grain sizes in a bimodal microstructure are
presented in order to increase the strength as well as ductility of a generic aluminum
alloy. The proposed numerical strategy of coupling the CP and efficient FFT-based
spectral solver supports the development of new materials in an optimal way.
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1. Introduction

The quality of the optimization of metal forming processes strongly
depends on material models used. In addition, determination of the model pa-
rameters is commonly the most time consuming part and can be very expen-
sive, due to the needed experimental data. As the models are getting more and
more complex, the number and complexity of the required experiments is in-
creasing continuously as well. In the sheet metal forming context, these require-
ments are even more pronounced, because of the anisotropic behavior of the
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sheet materials. In general, tensile tests in at least three directions, biaxial tests
and tension-compression or shear-reverse shear experiments are performed to
determine the parameters of the macroscopic models, e.g. the HAH model [1].
Hence, determination of the macroscopic model parameters based on virtual
experiments is a very promising strategy to overcome these difficulties and to
reduce the number of real experiments to a minimum. For this purpose, in the
framework of this study, following topics are covered:

• Prediction of the anisotropic behavior (yield locus) based on crystal plas-
ticity simulations

• Investigation of the influence of the grain size on the hardening behavior
on bimodal microstructures.

Macroscopic yield loci are widely used in the sheet metal forming community due
to their computational efficiency compared to multiscale CP based material mod-
elling. The number of available models is high and their complexity differs greatly
and therefore, choosing an appropriate description of the anisotropic behavior
of considered material still remains a challenge. An overview of the currently
available models is given in [2–4]. Correct modeling of the anisotropic behavior
is of crucial importance, because the shape of the yield locus and moreover, the
normal on the yield surface, has a direct influence on the strain distribution
on a part. As a further aspect the strain distribution strongly influences the
failure occurrence as well. For cubic metals like aluminum and steel, symme-
try in yielding between tensile and compressive loading is generally assumed. In
consequence, the established YLD2000-2d mathematical model presented in [5]
is widely used. In general, anisotropic hardening phenomena are described us-
ing kinematic-hardening models as proposed e.g. in [6]. An alternative to the
kinematic hardening models is proposed in [1].

Materials with bimodal microstructures have gained special attention in the
past, because of their high strength and ductility properties. Various models
at different length scales, ranging from dislocation based up to analytical ones,
have been presented to model grain size effects on hardening and failure be-
havior [7–9]. A summary of the modeling techniques can be found in [7]. An
analytical model to describe hardening and failure behavior of bi-modal nanoa-
luminum alloys has been presented in [9]. Prediction capabilities of the model
were tested on an aluminum alloy manufactured using powder metallurgy tech-
niques. Manufacturing of bimodal microstructures is currently limited to some
special processes of powder metallurgy [9–11], friction stir processing [12, 13],
high pressure torsion [14]. In general, the base microstructure of bimodal mi-
crostructures is generated from a severe plastic deformation process (SPD) like
ARB (Accumulative Roll Bonding), ECAP (Equal Channel Angular Pressing)
or HPT (High Pressure Torsion). An overview of common SPD processes can be
found in [15] and [16].
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2. Crystal plasticity model

Computation of the microstructural response of the Representative Volume
Elements (RVE) are done with the open source DAMASK kit [17]. DAMASK
provides physically based as well as physically motivated phenomenological crys-
tal plasticity models. The physically based models have in general a large number
of material parameters, which make them difficult to be used in real case stud-
ies. For this purpose, the classical physically motivated phenomenological model
has been applied in the present study. The crystal plasticity model discussed in
this study is formulated in a finite strain framework and the kinematics of de-
formation are described in three different configurations: reference, intermediate
and current configuration. The multiplicative decomposition of the deformation
gradient F = FeFp enables one computation of quantities in the intermediate
configuration in which for example the second Piola–Kirchhoff stress S is defined.
The CP model is explained below and detailed explanations can be found e.g.
in [18] and [19]. If only plastic deformation due to dislocation slip is considered,
the plastic part of the velocity gradient can be given by

(2.1) Lp = ḞpF
−1
p =

Nslip
∑

α=1

γ̇α(mα ⊗ nα).

This relationship returns the shear strain rate γ̇α on a direction mα of the slip
system α described by its normal nα. The evolution equation for γ̇α is given by

(2.2) γ̇α = γ̇0
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where τα and τα
c are the resolved shear stress and the critical shear stress,

respectively. The relationship between the second Piola-Kirchhoff stress tensor
and the resolved shear stress is given in Eq. (2.3)

(2.3) τα = FT
e FeS : (mα ⊗ nα)

with FT
e FeS defining the Mandel stress tensor and S the second Piola–Kirchhoff

stress tensor

(2.4) S =
1

2
C : (FT

e Fe − I),

where C is the fourth order elasticity tensor. The most popular evolution equa-
tion for the critical shear stress is given in (2.5)

(2.5) τ̇α
c =

∑

β=1

hαβ |γ̇β|
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with the interaction matrix hαβ between the slip systems α and β

(2.6) hαβ = qαβ

[

h0

(

1 − τβ
c

τα
sat

)a]

.

In general, qαβ is set to 1, if α and β are coplanar. Otherwise, qαβ = 1.4.
In the framework of this study, the investigations of the grain size effects

on hardening behavior is based on a similar model as presented in [20]. This
model has been implemented in DAMASK [21]. Main equations are given in
(2.7) and (2.8)

τ̃α
c,0 = τα

c,0 + k1
1√
d
,(2.7)

τ̃α
sat = τα

sat + k2
1√
d
,(2.8)

where d is the grain size and k1, k2 are material constants. The influence of
the grain size on the hardening behavior of a generic material is discussed in
Section 5.

3. Material modeling based on crystal plasticity and a FFT-spectral
solver

In the context of micro mechanical material design usually a Representative
Volume Element (RVE) is considered. The spectral solver based on FFT (Fast
Fourier Transform) is an alternative to the classical FEM solvers, if periodic
boundary conditions are admissible. The basic idea of the FFT-method is to
transform the partial differential equations into the frequency domain and to
solve the resulting algebraic system of equations therein. It is worth to mention
that, in contrast to FEM, the equilibrium equation is fulfilled at each grid point.
For the sake of completeness a short summary of the method is given below. For
more details see [22].

The static equilibrium can be described using e.g. the first Piola-Kirchhoff
stress tensor

(3.1) DivP = 0.

The Fourier transform F̂ (K) = F {F (X)} of the deformation gradient
F (X) can then be given as

(3.2) F̂ (K) =

{

−Ĝ(K)τ̂ (K), K 6= 0,

F̄ δ(K), K = 0,



Modeling of anisotropic hardening and grain size effects. . . 493

where Ĝ is the so called "Gamma Operator" given in [22], K are coordinates of
the spectral space, δ is the Dirac-Delta and F̄ the averaged deformation gradient;
τ is the so called polarization field and is defined as τ (X) = P (X)−AF (X),
with A representing the stiffness of a linear comparison material.

Similar to the nonlinear FEM method an iterative scheme is used to solve
the resulting nonlinear system of equations. For this purpose, DAMASK provides
several algorithms and a comparison of the methods is discussed in [23]. In the
context of the well known Fix Point Method the equations at the current iteration
can be given as

(3.3) F
(n+1)(X) = F

(n)(X) + F−1

{

−Ĝ(K)P̂ (n)(K), K 6= 0,

(F̄ (BC,n+1) − F̄
(n))δ(K), K = 0,

with respect to the prescribed boundary conditions

(3.4) F̄
(BC,n+1) = F̄

(0) + ˙̄
F

(BC)∆t +

{

∂F

∂P

}(n)

(P̄ (BC) − P̄
(n))

where the superscript (0) represents quantities at the beginning of the increment,
(BC) stands for boundary conditions and ∆t is the time increment. Averaged
quantities are denoted by ( ¯ ) and therefore, ∂F /∂P represents the average
compliance.

3.1. RVE-modeling in the framework of a FFT-solver

Various microstructural quantities like shape and orientation of the grains,
the crystal system and other microstructure features have an influence on the
anisotropic behavior of metals, see e.g. [24]. In the framework of this study
the anisotropic behavior of the investigated materials is characterized by the
orientations of the grains, the texture. The well known methods based on X-ray
diffractometry enable one to measure the pole figures and thereafter compute the
ODF (Orientation Distribution Function). The ODF can be used directly as an
input for the RVE. However, the number of measured orientations is in general
too big and cannot be used directly for the numerical simulations, because of the
resulting high computational cost. The number of orientations of an ODF can be
reduced using various algorithms, e.g. [25]. It is shown in [21] that the reduction
of the orientations can have a significant influence on the resulting behavior of
the considered microstructure. If the reduced ODF contains in addition to the
representative orientations some other components with a high intensity, the
model response is not accurate enough. For the investigated materials measured
as well as reduced ODFs are shown in Figs. 2 and 3, for DC05 and AA6016-T4,
respectively. A RVE discretization by 163 for both materials has been used,
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whereas for the bimodal microstructure the number of FFT points is set to 1283,
because of the very small grains (≈ 1 µm) considered in the microstructure. In
[26, 27] 25 and 50 representative orientations have been considered, respectively.
In contrast to that, in the current study 1.6 ·104 orientations has been defined to
model the bimodal microstructure. The number of the FFT points corresponds
with the given discretization: 163 for the homogeneous material and 1283 for
the bimodal microstructure. This means that for 50 grains ≈ 80 FFT points
per grain were considered for the homogeneous microstructure. For the bimodal
microstructure ≈ 1.6·104 fine grains with a volume partition of 85% and therefore
≈ 110 FFT points per grain were considered. For the coarse grains inside the
bimodal microstructure the number of FFT-points is much higher (≈ 3 · 104),
due to the uniform distribution of the FFT points inside the RVE.

4. Calculation of yield locus based on crystal plasticity

4.1. Calculation of yield loci without pre-straining of the material

A common possibility to describe the anisotropic behavior of a material is the
description of its yielding behavior in the σx-σy stress space. For this purpose,
several stress ratios have been defined and applied as boundary conditions to
the RVE to detect the yielding point and to compare it with the well established
macroscopic yield locus model YLD2000-2d [5]. The results of the CP-simulations
and the macroscopic model are shown in Fig. 1a and 1b, whereas the fitted
model parameters are given in Tables 2 and 3. Both figures show that yield loci
based on CP simulations are able to represent the anisotropic behavior of the
investigated materials with a sufficient accuracy. The CP based prediction of

(a) DC05 yield loci [26]. (b) AA6016-T4 yield loci [27].

Fig. 1. Macroscopic yield loci vs. CP-FFT prediction.
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(a) ϕ2 = 0◦ (b) ϕ2 = 45◦ (c) ϕ2 = 65◦

(d) ϕ2 = 0◦ (e) ϕ2 = 45◦ (f) ϕ2 = 65◦

Fig. 2. Measured (top row) and reduced (bottom row) ODF of DC05 [26].

(a) ϕ2 = 0◦ (b) ϕ2 = 45◦ (c) ϕ2 = 65◦

(d) ϕ2 = 0◦ (e) ϕ2 = 45◦ (f) ϕ2 = 65◦

Fig. 3. Measured (top row) and reduced (bottom row) ODF of AA6016-T4 [27].

yielding compared to the macroscopic model YLD2000-2d can be summarized
as follows:

• DCO5: a negligible small deviation in the fourth quadrant has been ob-
served. Otherwise, practically no difference between the models.

• AA6016: an excellent agreement between the models is obtained.
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Table 1. Normalized material properties.

Material σ0/σ0 σ45/σ0 σ90/σ0 σb/σ0 r0 r45 r90 rb

DC05 1.00 1.05 1.04 1.14 2.00 1.47 2.52 0.85

AA6016-T4 1.00 0.96 0.98 0.99 0.69 0.50 0.67 1.00

Table 2. Fitted hardening parameters for the CP model for the materials DC05
and AA6016-T4 based on the ODF and yield curves given in [28] and [29],

respectively.

Material τc,0 τsat h0 a n

DC05 58.00 MPa 151.0 MPa 900.0 MPa 2.1 60

AA6016-T4 42.85 MPa 120.8 MPa 503.3 MPa 1.3 50

Table 3. Fitted Yld2000-2d parameters for DC05 [28] and for AA6016-T4 [29].
Tensile tests in 0, 45 and 90◦ to rolling direction and an equibiaxial test were

performed to fit the Yld200-2d parameters.

Material a α1 α2 α3 α4 α5 α6 α7 α8

DC05 6 1.084 0.982 0.846 0.881 0.908 0.836 0.972 0.975

AA6016-T4 8 0.947 1.107 0.961 1.032 1.021 1.013 0.967 1.153

4.2. Calculation of yield loci for the pre-strained material

Real forming processes contain in general nonlinear strain paths. The predic-
tive capabilities of the presented CP-model are tested on the DC05 steel grade,
which was first prestrained in rolling direction up to ǫ11 = 0.15 followed by
a transverse uniaxial or an equibiaxial deformation. The responses of several
models are shown in Fig. 4. The CP-model predicts both experimental points
with a sufficient accuracy. In addition, a slightly anisotropic hardening of the
CP-prediction could be observed, see for further details [26]. The classical Tay-
lor model seems to predict the yield point in transverse direction pretty well.
However, in the equibiaxial region the deviation is very high. Even the HAH
model [1] does not show the desirable predictive capabilities. Nevertheless, sev-
eral extensions of the first version of the distortional hardening model HAH,
presented in [1], have been recently published in [30] and [31], which could show
a more appropriate behavior of the model in the transverse direction. A compar-
ison of the experimental effort between the CP-modeling and the macroscopic
modeling e.g. the HAH model can be summarized as follows:

• For the CP model only the ODF and the uniaxial hardening curve is re-
quired to determine the material parameters.



Modeling of anisotropic hardening and grain size effects. . . 497

Fig. 4. Comparison of the CP-prediction and various macroscopic models for the prestrained
material of ε11 = 0.15 in rolling direction [26].

• For the macroscopic HAH model following experiments are necessary
– Tensile tests in three different directions (0◦, 45◦ and 90◦ to rolling

direction).
– One equi-biaxial test to determine the biaxial yield stress and one

compression test to determine the Lankford-parameter (R-Value).
– At least one test with load reversal e.g. shear-reverse shear, if for

example the Bauschinger effect has to be modeled.

5. Bimodal microstructures – grain size effects

Depending on the defined requirements for the properties of a material e.g.
high yield stress, high strength or high ductility and fracture strain etc., several
mechanical, thermal and alloying strategies are applied. The big challenge is to
combine e.g. high strength and ductility of a material. Bimodal microstructures
show promising properties in this context. In general, bimodal microstructures
consist of a matrix in the ultrafine grained range – ufg1, responsible for high
strength, and coarser grains, responsible for high ductility. Several work have
been published in this context, to name some few, representative publications
are shortly discussed below.

A nanostructured hierachical AA7075 aluminum alloy approximating a ten-
sile strength of 1 GPa has been presented in [32]. However, the high strength alloy

1ufg-range: grainsize between 100 nm and 1 µm.



498 B. Berisha et al.

showed a uniform elongation of only ≈ 5%. A summary of various heterogeneous
microstructures with specific mechanical properties is presented in [16]. A bi-
modal stainless steel showing high strength and ductility is presented in [33];
[34] proposed a thermomechanical strategy to manufacture copper with a bi-
modal microstructure. The achieved material properties result in very high
strengths and ductility. In [35] the mechanical properties and the numerical
modeling of heterogeneous (bimodal, gradient etc.) nanostructured single phase
materials have been discussed. A material model for FCC ultrafine-grains/nano-
crystalline grains has been presented in [36]. Grain boundary segregation of
nanocrystalline binary aluminum alloys has been investigated in [37] based on
MD (Molecular Dynamics) simulations. Strain rate sensitivity of bimodal Al-
laminates manufactured via accumulative roll bonding (ARB) has been dis-
cussed in [38]. The alternating layers were defined from a commercial purity
aluminum (Al99.5) and a high purity aluminum (Al99.999). A summary of the
mechanical behavior of nano-grain Cu and Cu-based alloys as well as bimodal
microstructures is presented in [39]. Rolling technologies for producing ultrafine-
grains/nanograins are summarized in [40].

In addition to the advances in manufacturing technologies for the production
of ufg and bimodal microstructures, numerical methods enabling an efficient
modeling of the microstructure have been developed as well. Modeling of the
plastic behavior of metals based on crystal plasticity theory is a well-established
methodology. However, in the framework of CPFEM, the computation time is
very high and therefore, the computations are restricted to simplified microstruc-
tures as well as simple polycrystal models. In the presented work, an efficient
coupling of a physically motivated phenomenological crystal plasticity model –
including an implementation of grain size effects – and the FFT-spectral solver
of the code DAMASK [17] is proposed.

In the following, hardening behavior of uniaxial as well as model predictions
for biaxial loading cases are discussed. In this context, Eqs. (2.7) and (2.8) have
to be considered. It is worth to mention that manufacturing of bimodal alu-
minum remains a challenge. However, based on available experimental data of
homogeneous microstructures, several model predictions are discussed and the
potential of bimodal microstructures is highlighted.

5.1. Determination of the material parameters

The additional parameters k1 and k2 in Eqs. (2.7) and (2.8) of the material
model have been fitted on measured hardening curves for two different grain sizes:
12 µm and 29 µm, see Fig. 5(a) and 5(b). The corresponding ODFs are shown in
Fig. 6. Both microstructures show practically the same ODF. A specific thermal
treatment strategy has been applied to exclude the influence of the cold work,
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which is of crucial importance when the influence of the grain size on hardening
is investigated.

Various optimization strategies can be applied to determine the unknown
parameters of the explained model. The mathematical optimization has been
covered on a cluster, to enable parallel computing and thus reducing the compu-
tational time significantly. In this context, a quadratic adaptive response surface

(a) Hall-Petch relationship for τ̃c,0. (b) Yield curves for both grain sizes:
12 µm and 29 µm.

Fig. 5. Grain size effect in AA5356.

(a) ϕ2 = 0◦ (b) ϕ2 = 45◦ (c) ϕ2 = 65◦

(d) ϕ2 = 0◦ (e) ϕ2 = 45◦ (f) ϕ2 = 65◦

Fig. 6. The ODFs of the AA5356 alloy: grain size 12 µm (top) and 29 µm (bottom).
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methodology with a D-optimal sampling technique has been applied. 32 parallel
simulations were performed to minimize the objective function given below

(5.1) f = ‖ymodel − yfine
exp ‖2 + ‖ymodel − ycoarse

exp ‖2,

where ycourse
exp (grain size d = 29µm) and y

fine
exp (grain size d = 12µm) rep-

resent the measured hardening behavior of the coarse and fine grain material,
respectively. Table 4 shows the fitted model parameters for the aluminum alloy
AA5356.

Table 4. Hardening parameters for the CP model with grain size effects.

Material τc,0 τsat h0 k1 k2 a n

AA5356 12.35 MPa 135.05 MPa 612.39 MPa 19.13 mm1/2 20.97 mm1/2 2.0 50

The quality of the fit is shown in Figure 5(b). It can be highlighted that the
proposed CP-model is able to represent the hardening behavior simultaneously
for both grain sizes. Further, there is no significant difference in the hardening
slope of the considered curves and therefore, the grain size parameters k1 and
k2 have similar values.

5.2. Prediction of the hardening behavior of a bimodal microstructure

The influence of the grain size on hardening behavior is well studied experi-
mentally as well as from a mathematical modeling point of view [16, 20, 41–43].
The tendency is obvious: if the grain size decreases the yield stress increases.
However, the well known disadvantage still remains, namely, the uniform elon-
gation decreases significantly. For the aluminum alloy AA5356 the influence of
the grain size on the yield stress is shown in Fig. 7(b). The yield curves of the
generic bimodal structures with a reasonable hardening rate and high uniform
elongation show a very promising and interesting behavior. A selected RVE (Rep-
resentative Volume Element) of the bimodal microstructure is shown in Fig. 7(a).
The volume fraction of the coarse grains is ≈ 15%.

5.3. Determination of yield locus for the generic bimodal microstructure

In addition to the hardening behavior in the uniaxial tension, the biaxial
hardening behavior is also of crucial importance for characterizing the forming
properties of a material. For this purpose, the yield locus for the presented bi-
modal microstructure has been computed, see Fig. 8. In contrast to the measured
ODF for AA6016 and DC05, for the bimodal microstructure no measurements
are currently available, because the real material does not yet exist. The ODF
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(a) (b)

Fig. 7. Selected bimodal RVE and numerical predictions of strain hardening. (a) RVE of
a bimodal microstructure: df ≈ 2.5 µm (fine grain) and dc ≈ 20 µm (coarse grain);

(b) predicted yield curves of representative bimodal microstructures and measured yield
curves of AA5356 with a homogeneous microstructure – which were used to calibrate the

CP-model (see Fig. 5(b)).

Fig. 8. Predicted yield locus of the AA5356 alloy with a bimodal microstructure.

has been generated using the open-source MTEX toolbox [44]. The main compo-
nents of the fine grains are chosen to be Brass components, for the coarse grains
Cube components have been defined. A scatter of 10◦ of the orientations has
been included, in order to avoid too sharp/artificial grain orientations.

It can be highlighted that the equibiaxial point is shifted to higher stresses,
which leads to a significant benefit compared to the classical anisotropic behavior
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of the aluminum alloys as shown e.g. in Fig. 1(b) for the well established alloy
AA6016-T4. From a modeling point of view, bimodal microstructures seem to
have very promising forming properties also in multiaxial loading cases.

6. Conclusions and outlook

It can be concluded that an efficient coupling of crystal plasticity models and
the FFT-spectral solver leads to a significant reduction of the amount of real
experiments needed to calibrate macroscopic models. Further, due to the time
efficient spectral solver used in the computation of the RVE models, detailed
modeling of the microstructure is possible. From a modeling point of view it
was demonstrated that bimodal microstructures have the potential to achieve
high strength and ductility as well as a more appropriate anisotropic behavior
for metal forming. Manufacturing of bimodal Al-alloys on the lab-scale is the
subject of the ongoing work. Those experiments will enable a validation of the
CP-models regarding anisotropic hardening as well as prediction of the yield
curve.
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