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Abstract

The present work is devoted to the free convection flow occurring over a heated ver-

tically stretching permeable thermally radiative magnetized surface placed in a porous

medium under the influence of a temperature dependent internal heat generation or ab-

sorption. It is shown that the governing equations are reducible to a self-similar nonlinear

ordinary differential equation of third order whose solutions are constructed analytically

in the purely exponential series form. Under special circumstances, closed-form solutions

are available which clearly indicate the existence of dual natural convection solutions.

Otherwise, analytical solutions are still possible which are shown to be computed from
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an elegant algorithm without a need to invoke any numerical means. Exact solutions

demonstrate, in physical insight that, in the presence of a heat sink absorbing the temper-

ature from the porous medium enhances the rate of heat transfer from the wall, whereas

a heat source mechanism will surely overheat the system during the wall heating process,

resulting in poor heat transfer rates. The presented exact solutions are beneficial for in-

vestigation of free convection phenomena in different geometries taking into account more

complex physical features in higher dimensions.

Key words: Porous vertical wall, Magnetic Field, Radiative flux, Permeable surface, Heat

generation/absorption, Rate of heat transfer, Analytical solutions.

Nomenclature

Roman symbols

a positive temperature parameter

(an, An) coefficients of the series

B0 uniform magnetic field strength

(c, d) radiative heat flux parameters

cp specific heat

e constant

f dimensionless self-similar velocity

g gravitational acceleration

k thermal conductivity

K porosity parameter

M magnetic interaction parameter
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Nu Nusselt number

Nr radiation parameter

s dimensionless suction or injection parameter

qr radiation flux term

q′′′ temperature dependent heat flux term

(Q̃, ˜̃Q) heat flux parameters

Q heat generation/absorption parameter

T temperature

Tw surface temperature

T∞ far field temperature

u velocity component in x−direction

v velocity component in y− direction

Uw wall stretching velocity

vw permeability parameter

V w dimensional wall mass transfer velocity

(x, y) longitudinal and transverse directions

Greek symbols

(α, β) constants

αm thermal diffusivity

βm thermal expansion parameter

η scaled boundary layer coordinate

κ fixed parameter

θ scaled temperature
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µ dynamic viscosity

ν kinematic viscosity

σ electrical conductivity

ρ density

λ positive exponent

Λ temperature parameter

Superscripts

¯ scaled quantities

˜ scaled quantities

Subscripts

l local quantities

w quantities at wall

∞ quantities at far field

Acronyms

MHD Magnetohydrodynamics

1. Introduction

It is now well-known that the density variations due to the temperature gradients in a fluid

medium lead to a physical mechanism called free (natural) convection. Such a physical op-

eration is encountered in many real-life applications as far as the porous media is concerned,

for example while cooling the electronic equipments in computers, forming the clouds in atmo-

sphere, interaction of spices in chemical engineering, processes in biological systems, removing

heat from nuclear fuel debris, insulating the constructions, storing the energy and foods and
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so on, refer to the comprehensive reviews [1], [2] and [3]. The current investigation is also

about the phenomenon of MHD natural convection in saturated porous media with heat gen-

eration/absorption and thermal radiation with an objection of gaining closed-form solutions.

The heated vertical plate placed in a medium of porous feature received considerable at-

tention lately in order to explain the process of free convection. In the absence of a source to

cause a heat generation, several temperature conditions, from a variable surface temperature to

a variable heat flux were successfully analyzed in [4]. Effects of porosity were numerically sim-

ulated in [5]. On the other hand, the internal heat generation has an active role in the natural

convection heat transfer in many porous media problems. Due to its significance, [6] first con-

sidered the internal heat generation term in the governing energy equation as a fixed variable

term for the problem of free convection from a vertical wall embedded in a porous medium.

Many researchers adhered this plausible work, by taking into account such an internal heat

generation term. For instance, [7] extended the work of [6] to the non-Newtonian fluid case.

[8] incorporated the effects of mass injection/removal through the wall boundary. [9] discussed

the convective boundary condition associated with the temperature. [10] took into account the

double diffusive Soret and Dufour effects with a power-law fluid. The radiation effects were

included in the numerical investigation of [11]. [12] studied the effects of viscous dissipation and

magnetic field. The free convection problem affected by the presence of a saturated nanofluid

medium was the focus of the study in [13]. The conditions of variable thermal diffusivity and

mass diffusivity in a non-Newtonian fluid were examined in [14], followed by the concentration

effects in [15].

The internal heat generation term introduced and employed in [6] to the heated vertical wall

was also considered in the following applications, such as the natural convection phenomena
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in vertical cones, see [16] and [17], and in the horizontal plates [18] and [19]. Very interesting

applications of porous media correlated with natural convection can be found in the recent

papers [20], [21], [22], [23] and [24].

The prime motivation for the current research is to substitute the fixed internal heat gen-

eration term as used in the above papers with that of a temperature dependent heat flux term

representing more realistic situations. Within this perspective, the effects of such a term are to

be investigated on the free convection taking place along a vertical plate embedded in a porous

medium. The plate is assumed to be heated permeable and radiative subjected to a uniform

magnetic field. The governing equations are reduced to a self-similar form whose solutions,

unlike the existing numerical literature, are presented in an elegant analytic form which can be

expressible in either closed-form or infinite series. The solutions perfectly conform with those

numerical ones for the particular parameters. In the case of series, an algorithm is further

introduced necessitating no numerical computations. The engineering interest of heat transfer

rate can be easily derived from the presented data.

2. Physical problem and mathematical formulation

As depicted in figure 1, we consider the free convection phenomenon over a flat plate, heated

with the wall temperature Tw(x) = T∞ + axΛ, and embedded in a porous medium, taking into

account a heating/cooling heat flux term dependent on the temperature as q′′′ = Q̃(T − Tw)

in place of an exponentially decaying shape as introduced in [6]. The wall is assumed to be

permeable with a wall transpiration velocity V w(x) = vwx
Λ−1
2 and it is also radiative with a

Rosseland based radiation flux qr = −c(T 4)y, but linearized such that qr = dTy. A uniform

magnetic field further acts against the surface to retard the motion with a uniform magnetic
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Figure 1: The schematic of the natural convection over a heated vertical flat surface subjected

to various physical phenomena.

field strength B0.

Following [6], the natural convection takes place according to the governing equations and

boundary conditions

ux + vy = 0,(
1 +

σB2
0K

µ

)
u =

gKβm

ν
(T − T∞),

uTx + vTy =
k

ρcp
Tyy +

Q̃

ρcp
(T − T∞) +

d

ρcp
Tyy,

v = V w(x), T = Tw(x) on y = 0,

u → 0, T → T∞ as y → ∞. (2.1)
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With the help of the similarity transformations

u = αmaex
Λf ′(η), v = −αm

√
ae

4
x

Λ−1
2 [(1 + Λ)f(η) + (Λ− 1)ηf ′(η)], T = T∞ + axΛθ

e =
gKβm

αmν
, αm =

k

ρcp
, η =

√
aex

Λ−1
2 y, (2.2)

system (2.1) is expressed in the reduced similarity form

f ′′′ + αff ′′ − βf ′2 +Qf ′ = 0,

f(0) = s, f ′(0) = 1, f ′(∞) = 0 (2.3)

with (1 +M)f ′ = θ. Here, vw = −αm

√
ae
2
(Λ + 1) s

1+M
and s > 0 represents wall suction, s < 0

wall injection. Moreover, the appearing parameters are

α =
1 + Λ

2(1 +Nr)(1 +M)
, β =

Λ

(1 +Nr)(1 +M)
,

withNr = d
k
being the thermal radiation parameter, Q =

˜̃Q
kae(1+Nr)

being the heat generation (>

0) or absorption (< 0) parameter ( ˜̃Q = Q̃x1−Λ) and M =
σB2

0K

µ
being the magnetic interaction

parameter. We should note that replacing Qf ′ in (2.3) by the exponential form e−η and also

accounting for M = s = Nr = 0, (2.3) turns in to the mathematical model given in [6].

In terms of engineering viewpoint, we are mainly interested in the local rate of heat transfer,

or the local Nusselt number defined by

Nu =
Nul

√
eax

Λ+1
2

= −θ′(0) = −f ′′(0). (2.4)

Integrating (2.3) once from the semi-infinite physical domain, we have

f ′′ + αff ′ +Qf + (α + β)

∫ ∞

η

f ′2(η)dη = Qf∞, (2.5)

where f∞ = f(∞) and so, from (2.4),

Nu = (α +Q)s−Qf∞ + (α+ β)

∫ ∞

0

f ′2(η)dη. (2.6)
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The result presented in (2.6) alone is successfully able to explain the effects of s and Q, for pre-

assigned values of α and β (preserving the effects of magnetic field, temperature and radiation)

on the heat transfer analysis of the considered problem.

3. Analytical solution method

Dissimilar to the available numerical solutions in the literature obtained from various numerical

schemes, we plan to find out exact solutions representing the flow and temperature fields. The

following solution method stems from the study published in [25], particularly valid when Q < 0

(in place of M in [25]). Taking into account the asymptotic far field condition of the system

(2.3), it is realistic to search for solutions of the purely exponential serial form

f(η) =
∞∑
n=0

Ane
−nλη, (3.7)

such that the exponent λ in (3.7) is a positive constant to match to the infinity boundary

condition and A0 = limη→∞ f(η) = f(∞) = f∞. Both A0 and λ are to be found.

Injecting (3.7) into (2.3) results in

−nλ(n2λ2 +Q)An + αn2λ2A0An +
n−1∑
k=0

kλ2[(α− β)k + β(2k − n)]AkAn−k = 0, n ≥ 0.(3.8)

There are two subcases to be considered now, in accordance with the far field behavior of

the stream function f .

3.1. A0 = f(∞) = 0, A1 ̸= 0

In this case the parameter Q can not be zero and we have

λ =
√
−Q
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from (3.8) implying that (3.7) type solutions are available only when Q < 0 corresponding to

the presence of heat absorption, and hence cooling physical situation, to be determined from

the system

An =
1

λn(n2 − 1)

n−1∑
k=0

k[(α− β)k + β(2k − n)]AkAn−k, n ≥ 2,

s =
∞∑
n=1

An,

1 =
∞∑
n=1

(−nλ)An. (3.9)

Making use of (3.9), we can determine the pair of unknowns (λ,A1), numerically. On the other

hand, to avoid the numerics, we propose the use of new coefficients an from

An = λκnan, (3.10)

with κ = A1

λ
such that a1 = 1.

With the help of (3.10), (3.9) can be rewritten as

a0 = 0,

a1 = 1,

an =
1

n(n2 − 1)

n−1∑
k=0

k[(α− β)k + β(2k − n)]akan−k, n ≥ 2,

s

λ
=

∞∑
n=0

κnan,

1

λ2
= −

∞∑
n=0

nκnan. (3.11)

Thus, for fixed values of α and β, since a′ns are all known, prescribing a value of κ so that the

sum’s in (3.11) are both convergent will produce λ and s from the last two equations in (3.11)
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as

λ =

(
− 1∑∞

n=0 nκ
nan

)1/2

,

s = λ

∞∑
n=0

κnan. (3.12)

It should be alerted that, if s is fixed in (3.11), then a numerical scheme must be employed

to get κ and λ, which is not what we want here. We emphasize that expressions in (3.12) are

exact formulas for the physical parameters as opposed to the numerical values existing in the

literature. The valid region of κ may be obtained from a map by forcing the sums in (3.12) are

convergent with simple exercising. This can be achieved up to the required degree of accuracy

with as much terms as possible in the sum. In the more special values of α = β, a closed-form

solution can be found from (3.11) and (3.12) resulting in

f(η) = se
η
s , (3.13)

valid for s < 0, λ = −1
s
, Q = − 1

s2
, which indicates that Nu = −θ′(0) = −f ′′(0) = −1

s
is

positive and hence an enhanced heat transfer rate is attained for the stream function of the

form (3.13). Obviously, as the injection gets stronger, the rate of heat transfer will degrade.

3.2. A0 = f(∞) ̸= 0, A1 ̸= 0

In this case, from equation (3.8) we anticipate that

A0 =
λ2 +Q

αλ
, (3.14)

and the rest of the coefficients can be found from

An =
λ

n(n− 1)(nλ2 −Q)

n−1∑
k=0

k[(α− β)k + β(2k − n)]AkAn−k, n ≥ 2. (3.15)
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With the help of the new scaled parameters Q = λ2Q̄, s = λs̄, An = A0κ
nan with

κ = A1

A0
, (3.15) and the boundary conditions are no longer explicitly relying upon the unknown

coefficients λ and A1, and hence we have

a0 = 1,

a1 = 1,

an =
1 + Q̄

αn(n− 1)(n− Q̄)

n−1∑
k=0

k[(α− β)k + β(2k − n)]akan−k, n ≥ 2,

s̄ =
1 + Q̄

α

∞∑
n=0

κnan,

1 = −λ2

(
1 + Q̄

α

) ∞∑
n=0

nκnan. (3.16)

From the last two equations in (3.16), λ and s̄ can be evaluated as

λ =

(
− α

(1 + Q̄)
∑∞

n=0 nκ
nan

)1/2

,

s̄ =
1 + Q̄

α

∞∑
n=0

κnan. (3.17)

Therefore, for preassigned values of κ (and fixed Q̄, α and β), s̄ and λ from (3.17) can be

found which are later on used to get s and Q and hence all the physical quantities are known.

It is also noteworthy to draw attention that when α = β, the exponent λ can be exactly worked

out from (3.16) and (3.17)

λ =
αs±

√
α2s2 + 4(α−Q)

2
, (3.18)

implying the existence of dual solutions for the suction case and unique solution for the injection,

both depending on the heat generation/absorption parameter Q and α.

12



4. Results and Discussions

We should in prior mention that our model collapse onto the well-documented one of [26], when

α = Λ+1
2

and β = Λ in the absence of M , Nr, s and Q. To further validate the extracted model

in the present investigation, and to justify the correctness of the exponential type solutions,

Tables 1 and 2 are listed comparing the present outcomes (15 terms in the series) with those

available in the open literature. Excellent agreement is anticipated in the Tables. We notice

that the present model also covers the physical situation valid for the natural convection over

a vertical cone formulated in [16], as inferred from Table 2.

[27] [6] [7] Present

(α = 1/2, β = 0.0) 0.4437 0.4440 0.443885 0.443833

(α = 2/3, β = 1/3) 0.6776 0.6788 0.677707 0.677648

Table 1: The heat transfer rates Nu at M = Nr = s = Q = 0 over a vertical plate.

[28] [16] Present

(α = 3/2, β = 0.0) 0.7685 0.7686 0.768742

(α = 7/4, β = 1/2) 0.9896 0.9897 0.989621

Table 2: The heat transfer rates Nu at M = Nr = s = Q = 0 over a vertical cone.

Present solutions will be discussed next separately for A0 ̸= 0 and A0 = 0.
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4.1. A0 ̸= 0

A few of the coefficients are displayed below from (3.16)

a0 = 1,

a1 = 1,

a2 = −
(α− β)

(
1 + Q̄

)
2α

(
−2 + Q̄

)
a3 =

(5α− 4β)(α− β)
(
1 + Q̄

)2
12α2

(
−3 + Q̄

) (
−2 + Q̄

)
a4 = −

(α− β)
(
1 + Q̄

)3 (−68α2 + 106αβ − 42β2 + (31α2 − 47αβ + 18β2) Q̄
)

72α3
(
−2 + Q̄

)2 (
12− 7Q̄+ Q̄2

) . (4.19)

When the infinity boundary condition is not vanishing, under the special circumstance α = β,

from (3.18) exponential solutions are restricted to

Q ≤ 1

4

(
4α + s2α2

)
.

Moreover, there exists a critical pair (Q, λ) for the appearance of dual solutions which are

computed as

(Q, λ) =

(
1

4

(
4α + s2α2

)
,
sα

2

)
, (4.20)

which clearly point that in the presence of wall suction together with a positive value of α, dual

solutions exist as also evident from figure 2. Such solutions are likely to appear only for the

heat generation case. This scenario, of course may change if negative values of α are taken into

account, which is also possible by the negative values of Λ.

Figures 3(a-c) reveal the effects of heat generation/absorption parameter Q̄ on the domains

of λ, s̄ and κ as well as on the heat transfer rate Nu, when α = 2/3 and β = 1/3. A common

observation from the figures is that for κ larger, the exponent λ, the suction/injection parameter
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Figure 2: Domain of the existence of purely exponential solutions when α = β = 1.

s̄ and the Nusselt number Nu are larger, in compliance with the physical expectations. From

the figures it is easy to deduce the well-known result that the suction cools down the porous

medium whereas the injection heats up leading to poorer heat transfer rates. All these physical

outcomes are connected with the exponent λ. In addition to this, absorbing the heat from the

system with a negative Q̄ will result in better heat transfer rates as compared to the positive

values of Q̄, as approved from the figures. For future reference, Table 3 tabulates some values of

λ, s̄ and Nu for three values of Q̄ at the selected parameters α = 2/3, β = 1/3 and κ = −1/2.

15



Γ =-0.5

0

0.5

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0

1

2

3

4

Κ

Λ

(a)

Γ =-0.5

0

0.5

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

-1

0

1

2

3

Κ

s

(b)

Γ =-0.5

0

0.5

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Κ

N
u

(c)

Figure 3: The effects of Q̄ on the physical parameters λ, s̄, κ and Nusselt number.

Q̄ = −1/2 Q̄ = 0 Q̄ = 1/2

1.6731748403 1.2246910238 1.0563777443

0.3840527014 0.7932861455 1.2473565111

1.5940722585 1.0889155503 0.8375230026

Table 3: The values of λ, s̄ and Nu at α = 2/3, β = 1/3 and κ = −1/2.
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4.2. A0 = 0

A few of the coefficients are displayed below from (3.11)

a0 = 0,

a1 = 1,

a2 =
α− β

6
,

a3 =
1

144
(5α− 4β)(α− β),

a4 =
(α− β) (33α2 − 51αβ + 20β2)

4320
,

a5 =
(α− β) (443α3 − 1008α2β + 774αβ2 − 200β3)

259200
,

a6 =
(α− β) (41861α4 − 125686α3β + 142913α2β2 − 72800αβ3 + 14000β4)

108864000
. (4.21)

Figures 4(a-c) reveal the effects of κ on the domains of λ, s as well as the on the heat transfer

rate Nu, when α = 2/3 and β = 1/3. Similar behaviors to the figures 4(a-c) are exhibited. We

should remark that Q = −λ2 in this case. For future reference, Table 4 tabulates values of λ,

s, Q and Nu at the selected parameters α = 2/3, β = 1/3 for some κ.

λ s Q Nu

κ = −2 0.7797878688 -1.4106793076 -0.6080691204 0.6450007908

κ = −1 1.0533632712 -0.9993075844 -1.1095741812 0.9507880027

κ = −1/2 1.4527010507 -0.7069776589 -2.1103403428 1.3772752129

κ = −1/4 2.0274923962 -0.4999765437 -4.1107254167 1.9730705227

Table 4: The values of λ, s and Nu at α = 2/3, β = 1/3 for some κ.

Finally, certain velocity and temperature profiles corresponding to Table 4 are displayed in

figure 5. Figures clearly exhibit the influences of physical parameters on the flow and temper-
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Figure 4: The effects of κ on the physical parameters λ, s and Nusselt number.

ature fields, in parallel to the physical intuition.

5. Concluding remarks

The free convection flow occurring over a heated vertically stretching permeable thermally

radiative magnetized surface placed in a porous medium is the main concern of the present

work. The originality stems from the use of a temperature dependent internal heat generation

or absorption flux, in place of the one which is preassigned in the previous studies of the
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Figure 5: Velocity and temperature distributions for some prescribed parameters, see Table 4

for the corresponding parameters.

literature.

The present work is also differentiated from the literature in that the reduced nonlinear

ordinary differential equation governing the physical phenomenon is treated analytically here.

As a result, either closed-form exact solutions are obtained for some specific values of the

physical parameters, otherwise solutions are sought in the purely exponential series form. In

this case, an elegant algorithm is also proposed to determine the temperature distribution with

an accuracy up to the desired decimal place without resorting to any numerical schemes.

Exact solutions are found, which are shown to be either dual or unique, depending on the

governing parameters. To conclude, in the presence of a heat sink absorbing the temperature

from the medium enhances the rate of heat transfer from the wall, whereas a heat source will
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surely heat up the system under consideration, resulting in poorer heat transfer rates.

Since the present work generalizes the internal heat generation term suggested in [6], in

future works, many publications pursuing that article may be reconsidered within context of the

present model. Finally, the presented data has the potentiality to be considered as a verification

tool for the natural convection processes over more complex surfaces in higher dimensions.
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