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Reach of an inclined cantilever with a tip load
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We investigate the problem of determining the reach of an inclined can-
tilever for a given point load suspended from its tip. Two situations are considered.
Firstly, we find the maximum reach of the cantilever by varying its angle of inclina-
tion. Secondly, we find the reach of the cantilever subject to the condition that its
tip is at some specified height, above or below, the level of the clamped end. In the
second case, the reach of the cantilever is maximised by shortening its physical length
whilst keeping the physical load and physical height of load deployment constant. All
of our solutions representing various reaches of an inclined cantilever for a given point
load suspended from its tip are shown to be stable to the snap-back instability.
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1. Introduction

Large deflections of cantilevers under various tip loads has been
the subject of research by many authors such as Bisshopp and Drucker [1],
Wang [2], Navaee and Elling [3, 4] and Batista [5].

Recently, much attention has been devoted to the reach of an inclined can-
tilever with a load suspended from its tip. Wang investigated the problem of
determining the angle of inclination and the longest reach of the cantilever de-
ploying a load suspended from its tip to the same level as its clamped end [6].
That problem was solved by numerical integration. Noticing that large loads
caused the cantilever to become highly deflected and the reach to become rela-
tively short, Wang had the idea of increasing, or maximising, the reach of the
cantilever by shortening its length. Numerical methods were used to demonstrate
that idea. Batista presented an analytical approach to maximising the reach,
also by shortening the length of the cantilever [7]. That approach applied cal-
culus to the exact solutions, in terms of Jacobi elliptic functions, representing
the equilibrium configurations of the inclined cantilever with a tip load. Plaut

and Virgin investigated the problem of determining the furthest reach of a can-
tilever with a load suspended from its tip [8]. In their investigation, which was
experimental and numerical, the restriction that the tip load is to be deployed
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to the same level as the clamped end was removed. Armanini et al. also anal-
ysed similar problems of extremal reach of a clamped-free elastic rod with a tip
load in the context of the performance and design of a robot’s arm for targeted
reaching [9]. Their results were mainly obtained through numerical methods and
corroborated experimentally.

The problems investigated in this paper, and in the references cited in the pre-
vious two paragraphs, have application in fields such as: robotics where rod-like
sensors are used to navigate environments [9, 10]; nanoscience where cantilever
sensors are utilised as scanning probes [11]; and disaster relief, medical aid, and
fruit harvesting as continuum manipulators [12].

In this paper we first investigate the problem of determining the angle of
inclination that produces the maximum reach of a cantilever for a given point
load suspended from its tip. Secondly, we find the reach of the cantilever for
a given point load suspended from its tip subject to the condition that the tip
of the cantilever must be at some specified height, above or below, the level of
the clamped end. That reach of the cantilever is then maximised by shortening
its physical length whilst keeping the physical load and physical height of load
deployment constant. We emphasise the importance of working in physical (di-
mensional) units when discussing maximising the reach by shortening the length
of the cantilever as it makes no sense to shorten the length of a non-dimensional
cantilever which is always normalised to one.

2. Mathematical model and exact solutions

Upper case letters refer to physical (dimensional) quantities and lower case
letters refer to non-dimensional quantities. Angles are the exception to that
rule, and always denoted by lower case Greek letters. Therefore, for the sake of
brevity and to avoid excessive use of the words ‘physical’ and ‘non-dimensional’,
we simply use the appropriate lower case or upper case letter when referring to
a quantity. The case will indicate whether it is physical or non-dimensional. For
example, L is a physical length and p is a non-dimensional load.

Consider a cantilever, modeled as a straight, inextensible and unshearable
elastic rod, inclined at an angle α to the X–axis. The length of the cantilever
is L. It is clamped at the origin and free at the other end where a point load
P is suspended from its tip. The cantilever is parameterised by its arc length,
0 ≤ S ≤ L with S = 0 at the origin and S = L at the free end or tip. The angle
the tangent at any point (X(S), Y (S)) on the deflected cantilever makes with
the X–axis is given by θ(S), see Fig. 1.

The ordinary differential equations describing the cantilever, which may be
derived from force and moment balance arguments applied to an infinitesimal
element of deflected cantilever, are
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Fig. 1. A general equilibrium configuration of the deflected cantilever inclined at angle α
under an end load P with reference to the (X, Y ) coordinate frame.

d2θ

dS2
=

P

EI
cos(θ),(2.1)

dX

dS
= cos(θ),(2.2)

dY

dS
= sin(θ).(2.3)

where EI is the flexural rigidity of the cantilever. The boundary conditions are

θ(0) = α,(2.4)

dθ(L)

dS
= 0,(2.5)

X(0) = 0,(2.6)

Y (0) = 0.(2.7)

We are interested in solutions for equilibrium configurations for which
X(L) ≥ 0 and in particular X(L) a maximum for a given load P . In that case
we may confine ourselves to values of α given by

(2.8) −π

2
≤ α <

3π

2
.

Furthermore, when α > π/2, the angle at the free end or tip γ = θ(L) is restricted
by

(2.9) γ ≤ −α + π.

That is because for those values of alpha, we are deflecting the cantilever against
the natural direction of deflection. It is a relatively simple procedure to obtain
the exact solutions to Eqs. (2.1)–(2.3) subject to the boundary conditions given
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by Eqs. (2.4)–(2.7), see Frisch-Fay [13] or Dym [14]. We just state them as follows

S =

(

EI

P

)
1
2

(F (φ, k) − F (φα, k)),(2.10)

X = 2

(

EI

P

)
1
2

k(cos(φ) − cos(φα)),(2.11)

Y =

(

EI

P

)
1
2

(2E(φ, k) − F (φ, k) − 2E(φα, k) + F (φα, k)),(2.12)

where the elliptic modulus k and elliptic argument φ are defined by

k = sin

(

γ − π/2

2

)

,(2.13)

φ = arcsin

(

sin( θ−π/2
2 )

k

)

,(2.14)

and φα is just the value of φ at θ = α. At S = L, Eqs. (2.10)–(2.12) become

L =

(

EI

P

)
1
2

(−F (φα, k) + K(k)),(2.15)

R = −2

(

EI

P

)
1
2

k cos(φα) = 2

(

EI

P

)
1
2
(

k2 − 1

2
+

1

2
sin(α)

)
1
2

,(2.16)

∆ =

(

EI

P

)
1
2

(−2E(φα, k) + F (φα, k) + 2E(k) − K(k)),(2.17)

where we have defined R = X(L) and ∆ = Y (L). K(k) and E(k) are the
complete elliptic integrals of the first and second kind, respectively. F (φ, k) and
E(φ, k) are the incomplete elliptic integrals of the first and second kind, respec-
tively. See Gradshteyn and Ryzhik [15] for further details on elliptic integrals.

In non-dimensional units defined by

(2.18) s =
S

L
, x =

X

L
, y =

Y

L
, p =

PL2

EI

with r = R/L and δ = ∆/L and using Eq. (2.18), Eqs. (2.10)–(2.12) become

s =
1

p
1
2

(F (φ, k) − F (φα, k)),(2.19)

x =
2k

p
1
2

(cos(φ) − cos(φα)),(2.20)

y =
1

p
1
2

(2E(φ, k) − F (φ, k) − 2E(φα, k) + F (φα, k)),(2.21)
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and Eqs. (2.15)–(2.17) become

1 =
1

p
1
2

(−F (φα, k) + K(k)),(2.22)

r = −2k

p
1
2

cos(φα) =
2

p
1
2

(

k2 − 1

2
+

1

2
sin(α)

)
1
2

,(2.23)

δ =
1

p
1
2

(−2E(φα, k) + F (φα, k) + 2E(k) − K(k)).(2.24)

3. The snap-back instability

As reported by Armanini et al., when the tip load p exceeds the critical
load pc = π2/4, the quasi-statically rotated cantilever will encounter a snap-back
instability [9]. That snap-back instability occurs at α = αs, where the snap-back
angle αs depends on p. On an α–k plot, that snap-back instability manifests at
the critical point (αs, ks), where ks = k(αs), as shown in Fig.2. Therefore, we
can determine αs from

(3.1)
dα

dk
= 0.
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Fig. 2. A typical α–k plot for p > pc with critical points at (αs, ks) and (π −αs,−ks). In this
plot, p = 3pc. Stable and unstable equilibrium configurations correspond to solid and dashed

parts of the curve, respectively.
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From Eqs. (2.22) and (3.1), we obtain the following necessary, but not sufficient,
condition for locating αs in −1 < k ≤ 0

(3.2) cos(α) − 2

(

k2 − sin2

(

α − π/2

2

))
1
2

× (E(φα, k) − E(k) − (1 − k2)(F (φα, k) − K(k))) = 0.

Now solve Eqs. (2.22) and (3.2) simultaneously to obtain α = αs and k = ks.
We restrict ks to −1 < ks ≤ 0 since we are only interested in non-negative reach,
r ≥ 0. It may be noted that there is a second critical point on the α–k plot
shown in Fig. 2. Its location, by symmetry, is (π−αs,−ks). That second critical
point corresponds to negative reach, r < 0, and is therefore not considered in
our analysis.

An equilibrium configuration, for p > pc, with a clamp angle α obtained by
quasi-statically rotating the cantilever anti-clockwise from α = −π/2 will be
stable to the snap-back instability, and therefore realisable in practice, if

(3.3) α ≤ αs.

4. Maximum reach

Given a cantilever with the flexural rigidity EI and length L, what is the
angle of inclination α that produces the maximum reach R of the cantilever for
a given load P suspended from its tip? That reach is referred to as the “furthest
reach” by Plaut and Virgin [8]; we refer to it as the maximum reach. A similar
problem has been considered by Armanini et al., where it is referred to as the
“maximum horizontal distance” [9]. Since the flexural rigidity EI and length L
are constants, we can work with non-dimensional units without loss of generality
and avoid all those factors of EI and L. The reach R = Lr is a maximum Rmax,
if the reach r is a maximum rmax. That occurs when

(4.1)
dr

dα
= 0.

When the load p = 0 (and therefore load P = 0), it is obvious that the reach
r = cos(α) and Eq. (4.1) implies α = 0 and rmax = 1. In the case when the load
p > 0 (and therefore load P > 0), we use Eqs. (2.14), (2.22), (2.23) and (4.1) to
find

(4.2) 4k2(1 − k2) − cos2(α) + 2 cos(α)

(

k2 − 1

2
+

1

2
sin(α)

)
1
2

× (E(φα, k) − E(k) − (1 − k2)(F (φα, k) − K(k))) = 0.
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Equation (4.2) is a necessary, but not sufficient, condition to ensure that the
reach r is a maximum rmax. In which case the reach R is a maximum Rmax.
To determine rmax, we need to solve Eqs. (2.22) and (4.2) simultaneously for α
and k. Using, those values of α and k, rmax can be found from Eq. (2.23).

0.2 0.4 0.8

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

y

0.6 1.0
x

Fig. 3. Equilibrium configurations of the deflected cantilever at maximum reach, for
p = 0, 5, 10, 15, 20 and 25. Values of p increase as the tip of the deflected cantilever moves

closer to the y–axis, or as the values of maximum reach rmax decrease.

Figure 3 depicts a selection of our results for 0 ≤ p ≤ 25. For p = 0, 1, 2, 3, 4, 5
and 6 our results are in full agreement with the experimental and numerical
results of Plaut and Virgin [8] including their finding for p > 0 that the
maximum reach occurs when the tip of the cantilever is below the level of the
clamped end. Our analysis is capable of producing results for loads p such that
0 ≤ p < ∞ (or loads P such that 0 ≤ P < ∞). The necessary, but not sufficient,
condition for attaining maximum reach presented in Eq. (4.2) is, as far as we
know, new.

Plaut and Virgin [8] propose an approximation for the angle of inclination
α that produces maximum reach for a given tip load p of the form

(4.3) α = 0.3484p − 0.01451p2 − 0.001071p3.

That approximation works very well for 0 ≤ p ≤ 6 with a maximum error less
than 0.006 radians. However, for larger values of p the error becomes unbounded.
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Fig. 4. Angle α for maximum reach as a function of p. The dashed line is the approximation
for α given by Eqs. (4.4) and (4.5). The horizontal dashed line represents the asymptote

α = π/2.

Inspired by the approximation of Plaut and Virgin given by Eq. (4.3) and on
inspecting Fig. 4, we notice that the numerical solution for α is characterised by
α = 0 at p = 0 and α → π/2 as p → ∞. We therefore propose the approximation

(4.4) α =
π

2
(1 − e−(ap+bp2+cp3))

where a, b, and c are positive constants. If we consider the numerical solution for
α for 0 ≤ p ≤ 25 shown in Fig. 4, we can use a suitable function fitting algorithm
and obtain

(4.5) a = 0.2409, b = 0.01213, c = 7.625 × 10−10.

The important point to bear in mind when an approximation is used is to know
the maximum error over the range of values of p being considered. For 0 ≤ p ≤ 25,
the approximation given by Eqs (4.4) and (4.5) gives a maximum error of about
−0.0222 radians, see Fig. 4. Over that same range of values for p, the maximum
error for the approximation given by Eq. (4.3) is 18.6625 radians. Other valid
approximations for α as a function of p can be found over other various ranges
for p with some determinable maximum error. Incidentally, it must be pointed
out that Fig. 4 is in complete agreement with the subpart of Fig. 9(b) presented
in Armanini et al. [9].

Before investigating another maximum reach problem, we make a few remarks
on the maximum reach problem just solved.
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1. When p = 0, the cantilever is undeflected, the angle of inclination α = 0
and the maximum reach rmax = 1.

2. For a given load p such that 0 < p < ∞, the maximum reach rmax is
attained for some angle of inclination α such that 0 < α < π/2, where p
and α satisfy Eqs. (2.22) and (4.2).

3. In 0 ≤ α ≤ π/2, the elliptic modulus k = sin((α− π/2)/2) is a zero of Eq.
(4.2).

4. In π/2 < α < 3π/2, the elliptic modulus k = − sin((α − π/2)/2) is a zero
of Eq. (4.2). Furthermore, at that value of k, the associated value of the
load p is

(4.6) p = 4K2

(

sin

(

α − π/2

2

))

and the reach r is a minimum, rmin = 0, see Fig. 5. As a consequence of
Eqs. (2.9) and (4.6), in π/2 < α < 3π/2, the load p is constrained by

(4.7) p > π2.
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Fig. 5. A typical equilibrium configuration of a cantilever for π/2 < α < 3π/2 with
k = − sin((α − π/2)/2), p = 4K2(sin((α − π/2)/2)) and r = rmin = 0.
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5. Reach subject to the tip being at a given height

If a cantilever with the flexural rigidity EI and length L has to deploy a load
P suspended from its tip to a height H, above or below, the level of the clamped-
end, what is the angle of inclination α and the reach R of the cantilever? That
question is a generalisation of the question asked by Wang [6], Batista [7] and
Armanini et al. [9], where only the case H = 0 is discussed. In those papers
the reach is referred to as the “longest horizontal reach”; we refer to it as the
reach subject to the tip being at a given height. Obviously, the height H cannot
exceed the length L of the cantilever, thus we restrict H to

(5.1) −L < H < L.

The constraint on the cantilever’s free end or tip is

(5.2) ∆ = H,

where ∆ is given by Eq. (2.17).
As in Section 4, we can work with non-dimensional units without loss of

generality and avoid all those factors of EI and L. In that case Eq. (5.1) becomes

(5.3) −1 < h < 1

where h = H/L and the constraint on the cantilever’s free end or tip given by
Eq. (5.2) in non-dimensional form becomes

(5.4) δ = h,

where δ is given by Eq. (2.24). When the load p = 0 (and therefore load P = 0),
the reach r = cos(α) and Eq. (5.4) requires sin(α) = h. In which case α =

arcsin(h) and r = (1 − h2)
1
2 . In the case when the load p > 0 (and therefore

load P > 0), we need to solve Eqs. (2.22) and (5.4) simultaneously for α and k.
Using, those values of α and k, r can be found from Eq. (2.23). To be explicitly
clear, for given p > 0 and h restricted by Eq. (5.3) we simultaneously solve

p
1
2 + F (φα, k) − K(k) = 0,(5.5)

(h + 1)(−F (φα, k) + K(k)) + 2(E(φα, k) − E(k)) = 0,(5.6)

for α and k. Figures 6–8 display the equilibrium configurations of a cantilever
under various loads p for a selection of values of h.

As can be see from Figs. 6–8, as the load p increases, the reach r of the
cantilever decreases. In our analysis, we are only considering solutions with non-
negative reach, i.e. r ≥ 0. Thus, the least value of r is r = 0. That restricts p to
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Fig. 6. Equilibrium configurations of a cantilever for h = −0.2 and p = 0, 2, 4, . . . , 28. Values
of p increase as the tip of the deflected cantilever moves closer to the y–axis, or as the values

of reach r decrease.
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Fig. 7. Equilibrium configurations of a cantilever for h = 0 and p = 0, 2, 4, . . . , 20. Values of
p increase as the tip of the deflected cantilever moves closer to the y–axis, or as the values of

reach r decrease.
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Fig. 8. Equilibrium configurations of a cantilever for h = 0.2 and p = 0, 2, 4, . . . , 16. Values
of p increase as the tip of the deflected cantilever moves closer to the y–axis, or as the values

of reach r decrease.
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a maximal value pm and α to some value αm, which are determined as follows.
Setting r = 0 in Eq. (2.23) gives

(5.7) k = − sin

(

α − π/2

2

)

.

Note, we have taken the solution for k with the negative sign since the positive
sign corresponds to k for the undeflected cantilever. For the value of k given by
Eq. (5.7), Eqs. (5.5) and (5.6) become

p
1
2 − 2K(k) = 0,(5.8)

(h + 1)K(k) − 2E(k) = 0,(5.9)

respectively. Now solve Eq. (5.9) for k. Substitute that value of k into Eqs. (5.7)
and (5.8) to obtain α = αm and p = pm, respectively. Results obtained for
a selection of values for h are presented in Table 1, where αms is the snap-back
angle for the maximal tip load pm. For h = 0, the values of pm and αm presented
in Table 1 agree with those found by Batista [7].

Table 1. For each value of h, the corresponding values for pm, αm and αms
are

shown.

h pm αm αms

−0.2 29.3826 4.1552 4.2343

−0.1 24.8240 4.0038 4.1114

0 21.5491 3.8521 3.9928

0.1 19.0875 3.7004 3.8794

0.2 17.1700 3.5479 3.7714

Observe that αm < αms in all cases in Table 1, indicating stable equilibrium
configurations by Eq. (3.3). Furthermore, the values for αms in Table 1 agree with
those reported by Armanini et al., taking into account different conventions for
defining the clamp angle α and positive directions of quasi-static rotation [9].

6. Maximising the reach subject to the tip being at a given height

The load p is given in terms of the load P , length L and flexural rigidity
EI of the cantilever by Eq. (2.18). If L and EI remain constants, p increases
as P increases. In Figs. 6–8 we see that when p becomes sufficiently large, the
cantilever is highly deflected and the reach r becomes relatively short. Since the
reach R = Lr, this too becomes relatively short.

In order to increase the reach R of the cantilever while deploying the same
load P to the same height H, we can, as proposed by Wang [6], shorten the
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length L of the cantilever to achieve this. We clarify, that it must be the physical
cantilever that is shortened through its length L and not the non-dimensional
cantilever whose length is always normalised to one.

Suppose the length L of the cantilever is shortened by some factor λ < 1 and
becomes L∗ where

(6.1) L∗ = λL.

Then, for the same load P , the loads p and p∗ associated with the cantilever
lengths L and L∗, respectively, are related by

(6.2) p∗ = λ2p.

The fully dimensional physical equations describing the equilibrium configura-
tions of the cantilever of shortened length L∗ are easily obtained from Eqs.
(2.8)–(2.17) by replacing α, k, γ, S, X, Y , L, R, and ∆ with α∗, k∗, γ∗, S∗, X∗,
Y∗, L∗, R∗, and ∆∗, respectively. Note that the flexural rigidity EI and H, as
well as P , all remain constant.

We use λ to vary L∗ in Eq. (6.1) in order to maximise the reach R∗ subject
to the constraint

(6.3) ∆∗ = H,

for the same load P . We point out that we use the same height H for the
shortened cantilever of length L∗ as we did for the original cantilever of length L.
That is to ensure that we deploy the same load P to the same height H for both
cantilevers. Therefore, H must satisfy

(6.4) −L < L∗ < H < L∗ < L.

Or, equivalently h must satisfy

(6.5) −1 < −λ < h < λ < 1,

where h = H/L. Equations (6.4) and (6.5) imply that there are limits on H and
h and therefore care must be exercised when choosing them.

The condition for maximising the reach R∗ of the cantilever by varying λ is

(6.6)
dR∗

dλ
= 0.

Using Eqs. (2.14), (2.16), (2.17), (6.3) and (6.6), with quantities appropriately
subscripted with ∗, we find

(6.7) (2k2
∗
− 1) cos2(α∗) + 4k2

∗
(1 − k2

∗
) sin(α∗)

− 2 cos(α∗)

(

k2
∗
− 1

2
+

1

2
sin(α∗)

)
1
2

× ((2k2
∗
− 1)(E(φα∗

, k∗) − E(k∗)) + (1 − k2
∗
)(F (φα∗

, k∗) − K(k∗))) = 0.
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Equation (6.7) is a necessary, but not sufficient, condition to ensure that the reach
R∗ is a maximum. As far as we know it is new, although Batista [7] has a version
in terms of Jacobi elliptic functions derived for H = 0 (or h = 0). Armanini et al.

also discuss shortening the physical length to maximise the physical reach [9].
However, they do not give any condition of the form in Eq. (6.7) explicitly. From
Eqs. (2.17) and (6.3) we have

(6.8) hp
1
2 + 2(E(φα∗

, k∗) − E(k∗)) − F (φα∗
, k∗) + K(k∗) = 0

and from Eqs. (2.15) and (2.18) (or alternatively Eq. (2.22)) we obtain

(6.9) p
1
2
∗ = −F (φα∗

, k∗) + K(k∗).

We determine α∗ and k∗ by simultaneously solving Eqs. (6.7) and (6.8) for given
p and h. Then, substitute those values of α∗and k∗ into Eq. (6.9) to obtain p∗.
Once p∗, α∗ and k∗ are known, the equilibrium configuration representing the
maximised reach R∗ is fully determined. The value of λ is found from Eq. (6.2)
and therefore L∗ can then be determined from Eq. (6.1).

A simple calculation gives the following important ratio

(6.10)
R∗

R
= λ

r∗
r

=

(

k2
∗
− 1

2 + 1
2 sin(α∗)

)
1
2

(

k2 − 1
2 + 1

2 sin(α)
)

1
2

,

where r and r∗ are the non-dimensional reaches associated with the physical
reaches R and R∗, respectively. Equation (6.10) allows a direct comparison of
by how much the maximised reach R∗ is greater than the reach R (for the same
load P and height H). Specific values of L and L∗ are not needed for that
comparison. We only need α and k for the cantilever of length L and flexural
rigidity EI deploying a load P to height H and α∗ and k∗ for the cantilever with
maximised reach R∗, shortened length L∗ and flexural rigidity EI also deploying
a load P to height H.

We now present results for a selection of values for h. For each value of h
a table is shown displaying values for p, α, αs, r, p∗, α∗, α∗s , r∗, λ and R∗/R,
where αs and α∗s are the snap-back angles for tip loads p and p∗, respectively.
Also, for each table of results for a given value of h, we display a figure containing
two plots of the shapes of the deflected cantilever; the plot on the left is in
non-dimensional units and the plot on the right is in physical (dimensional)
units. For the latter, we assume some value for the length L of the cantilever in
metres (m) and take the flexural rigidity EI = 0.0034 Nm2 (which incidentally
corresponds to a nitinol strip of width 0.003 m and thickness 0.0005 m). In each
plot, both non-dimensional and dimensional, there are two curves; the dashed
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Table 2. Results for maximising the reach for h = −0.2.

p α αs r p∗ α∗ α∗s
r∗ λ R∗/R

10 1.9810 3.0969 0.6042 8.2834 1.6742 2.8279 0.6730 0.9101 1.0137

12 2.2570 3.3449 0.5335 8.5217 1.6657 2.8688 0.6655 0.8427 1.0513

14 2.5174 3.5395 0.4682 8.7500 1.6583 2.9069 0.6585 0.7906 1.1120

16 2.7712 3.6947 0.4065 8.9704 1.6518 2.9426 0.6518 0.7488 1.2007

18 3.0259 3.8206 0.3466 9.1845 1.6461 2.9764 0.6454 0.7143 1.3301

20 3.2896 3.9244 0.2865 9.3932 1.6410 3.0085 0.6393 0.6853 1.5291

22 3.5705 4.0110 0.2238 9.5975 1.6364 3.0390 0.6334 0.6605 1.8692

24 3.8676 4.0844 0.1563 9.7979 1.6322 3.0682 0.6278 0.6389 2.5663

26 4.1138 4.1471 0.0886 9.9948 1.6284 3.0962 0.6223 0.6200 4.3549

28 4.1891 4.2011 0.0327 10.1887 1.6249 3.1231 0.6170 0.6032 11.3679

Table 3. Results for maximising the reach for h = 0.

p α αs r p∗ α∗ α∗s
r∗ λ R∗/R

8 2.1408 2.7775 0.6356 6.3779 1.7976 2.4537 0.7265 0.8929 1.0205

10 2.5317 3.0969 0.5284 6.3779 1.7976 2.4537 0.7265 0.7986 1.0980

12 2.9032 3.3449 0.4250 6.3779 1.7976 2.4537 0.7265 0.7290 1.2461

14 3.2626 3.5395 0.3230 6.3779 1.7976 2.4537 0.7265 0.6750 1.5180

16 3.5906 3.6947 0.2220 6.3779 1.7976 2.4537 0.7265 0.6314 2.0661

18 3.8165 3.8206 0.1288 6.3779 1.7976 2.4537 0.7265 0.5953 3.3572

20 3.8859 3.9244 0.0509 6.3779 1.7976 2.4537 0.7265 0.5647 8.0664

curve represents the original cantilever of length L and the solid curve represents
the cantilever shortened to length L∗ to maximise the reach R∗.

We have shown the shapes of the deflected cantilever in physical (dimen-
sional) units because we feel that the effect of length shortening can only be
appreciated in physical units. The non-dimensional shapes of the deflected can-
tilever, by definition, are always of unit length and length shortening, as men-
tioned before makes little sense in this non-dimensional case.

When H = 0 (or h = 0),

(6.11) p∗ = 6.3779, α∗ = 1.7976, k∗ = −0.9243.

Those values for p∗, α∗ and k∗ are in agreement with Wang [6] and Batista [7]
(taking into account different sign conventions for the elliptic modulus k). Fur-
thermore, it can be shown from Eqs. (2.23) and (6.11) that the reach r∗ = 0.7265.
Also

(6.12) λ =
2.5254

p
1
2
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Fig. 9. Equilibrium configurations for h = −0.2. The plot on the left is in non-dimensional
units and the plot on the right is in physical (dimensional) units. In the plot on the left, the
dashed curve represents the original cantilever with p = 16 and the solid curve represents the

shortened cantilever with p∗ = 8.9704. In the plot on the right, where H = −0.3 m
(equivalent to h = −0.2), the dashed curve represents the original cantilever with

EI = 0.0034 Nm2, L = 1.5 m, P = 0.0242 N (equivalent to p = 16) and R = 0.6097 m and
the solid curve represents the shortened cantilever with EI = 0.0034 Nm2, L∗ = 1.1231 m,
P = 0.0242 N (equivalent to p∗ = 8.9704) and R∗ = 0.7321 m. See the row with p = 16 in

Table 2 for details.

Table 4. Results for maximising the reach for h = 0.2.

p α αs r p∗ α∗ α∗s
r∗ λ R∗/R

6 2.0384 2.3695 0.6871 5.5543 1.9318 2.2660 0.7160 0.9621 1.0025

8 2.5312 2.7775 0.5431 5.4714 1.9547 2.2463 0.7087 0.8270 1.0792

10 2.9693 3.0969 0.4004 5.4077 1.9753 2.2310 0.7009 0.7354 1.2873

12 3.3225 3.3449 0.2643 5.3576 1.9940 2.2190 0.6927 0.6682 1.7512

14 3.5295 3.5395 0.1447 5.3178 2.0114 2.2094 0.6842 0.6163 2.9139

16 3.5764 3.6947 0.0475 5.2862 2.0277 2.2018 0.6755 0.5748 8.1773

and from Eqs. (6.10) and (6.11) we have

(6.13)
R∗

R
=

0.9173
(

k2 − 1
2 + 1

2 sin(α)
)

1
2

.

An important fact to notice is that p∗, α∗ and k∗ are constants with no depen-
dence on p. That is because the term which introduces p dependence into the
system via a coupling with h, hp

1
2 in Eq. (6.8), vanishes when h = 0 (or H = 0).

When H 6= 0 (or h 6= 0), as demonstrated in our results, we can still maximise
the reach R∗ provided Eqs. (6.4) and (6.5) are respected. However, now since

h 6= 0, the term hp
1
2 in Eq. (6.8) introduces a dependency on p via a coupling

with h. In that case, as p changes, so do p∗, α∗ and k∗ as can be seen in Tables 2
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Fig. 10. Equilibrium configurations for h = 0. The plot on the left is in non-dimensional
units and the plot on the right is in physical (dimensional) units. In the plot on the left, the
dashed curve represents the original cantilever with p = 12 and the solid curve represents the
shortened cantilever with p∗ = 6.3779. In the plot on the right, where H = 0 m (equivalent to
h = 0), the dashed curve represents the original cantilever with EI = 0.0034 Nm2, L = 0.8 m,

P = 0.0638 N (equivalent to p = 12) and R = 0.34 m and the solid curve represents the
shortened cantilever with EI = 0.0034 Nm2, L∗ = 0.5832 m, P = 0.0638 N (equivalent to

p∗ = 6.3779) and R∗ = 0.4237 m. See the row with p = 12 in Table 3 for details.
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Fig. 11. Equilibrium configurations for h = 0.2. The plot on the left is in non-dimensional
units and the plot on the right is in physical (dimensional) units. In the plot on the left, the
dashed curve represents the original cantilever with p = 14 and the solid curve represents the
shortened cantilever with p∗ = 5.3178. In the plot on the right, where H = 0.72 m (equivalent

to h = 0.2), the dashed curve represents the original cantilever with EI = 0.0034 Nm2,
L = 3.6 m, P = 0.0037 N (equivalent to p = 14) and R = 0.521 m and the solid curve

represents the shortened cantilever with EI = 0.0034 Nm2, L∗ = 2.2187 m, P = 0.0037 N
(equivalent to p∗ = 5.3178) and R∗ = 1.5181 m. See the row with p = 14 in Table 4 for details.

and 4. As a consequence of p∗, α∗ and k∗ not being constants, Eqs. (6.11)–(6.13)
have no counterparts for H 6= 0 (or h 6= 0).

Finally, note in Tables 2–4 that α < αs and α∗ < α∗s in all cases. Therefore,
from Eq. (3.3), all equilibrium configurations being considered are stable to the
snap-back instability.
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7. Conclusion

We have presented a necessary, but not sufficient, condition for locating the
snap-back angle αs for a given tip load p, when p > pc, see Eq. (3.2). Although
Armanini et al discuss the snap-back instability and the angle αs at which it
occurs in detail, they do not give a precise mathematical condition for locating
αs [9]. Furthermore, a useful test for establishing the stability of an equilibrium
configuration to snap-back is given by Eq. (3.3).

The angle of the inclination α and maximum reach rmax of a cantilever with
a given load p suspended from its tip is determined. That problem, to some ex-
tent, is investigated by Plaut and Virgin where it is referred to as the “furthest
reach” [8]. However, their investigation mainly focusses on experiments and nu-
merical solutions and confines itself to loads p such that 0 ≤ p ≤ 6. Armanini et

al. also investigate that problem where it is referred to as the “maximum hori-
zontal distance” [9]. Although they too concentrate on numerical solutions and
experiments, they do consider loads p such that 0 ≤ p < ∞. Our analysis is
valid for all loads p such that 0 ≤ p < ∞. For 0 ≤ p ≤ 6, the results from our
analysis are in agreement with the results of Plaut and Virgin [8], especially their
finding that the maximum reach occurs when the tip is below the level of the
clamped end for p > 0, see Fig. 3. For 0 ≤ p < ∞, our results are in agreement
with Armanini et al [9]. In addition, we have presented, as far as we know, a new
necessary, but not sufficient, condition for determining the maximum reach rmax,
see Eq. (4.2). That condition is neither in Plaut and Virgin [8] nor Armanini et

al. [9]. Furthermore, we have given an approximation for the angle of inclination
α, required to attain maximum reach rmax, as a function of the load p that is
valid over a greater range of values of the load p than that of Plaut and Virgin
[8], see Eqs. (4.4) and (4.5). We remark that approximation is not to be found
in Armanini et al. [9].

The problem of determining the angle of inclination α and reach r of a can-
tilever required to deploy a load p suspended from its tip to a height h, above or
below, the clamped end is also solved. That problem is a generalisation of the
“longest horizontal reach” problem investigated by Wang [6], Batista [7] and
Armanini et al. [9], where only the case h = 0 is discussed.

Keeping the load P and height of load deployment H constant, we have also
solved the problem of maximising the reach from R to R∗ by shortening the
length of the cantilever from L to L∗. That solution involved the derivation of
a necessary, but not sufficient, condition for maximising R∗ given by Eq. (6.7).
As far as we know that condition is new, although Batista [7] has a version
in terms of Jacobi elliptic functions derived for H = 0 (or h = 0). Armanini

et al. do not give any condition of the form in Eq. (6.7) explicitly [9]. Realistic
physical examples are provided that visibly demonstrate the effect of maximising
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the reach by shortening the cantilever in Tables 2–4 and Figures 9–11. The
importance of working in physical (dimensional) units is stressed since we believe
shortening a cantilever in non-dimensional units, where the length is always
normalised to one, makes no sense. Our work clarifies the process of increasing
cantilever reach R by shortening its length L by emphasising the need to work
in physical (dimensional) units.

In Section 4, we always consider equilibrium configurations which have
0 ≤ α < π/2, with α → π/2 as p → ∞, see Fig. 4. For p > pc, we know
that αs > π/2, see Fig. 2. Therefore, by Eq. (3.3), snap-back instability never
occurs and maximum reach rmax is always attained. However, in Sections 5 and
6, we consider equilibrium configurations for p > pc which often have α > π/2.
Therefore, we must consider the possibility that those equilibrium configurations
could be unstable to the snap-back instability. An important observation is that
all of the equilibrium configurations of the tip-loaded cantilever considered in
Sections 5 and 6 are stable to the snap-back instability. That is a consequence of
only considering p such that p ≤ pm, where pm is the maximal load for a given
h, see Table 1. For a given h, an equilibrium configuration with pc < p ≤ pm

always appears to have α < αs, in which case it is stable to the snap-back insta-
bility by Eq. (3.3). In effect, restricting p to p ≤ pm for a given h ensures that
the reach r is restricted to r ≥ 0. To achieve snap-back, an unstable equilib-
rium configuration with r ≥ 0 would have to snap-back to a stable equilibrium
configuration with r < 0. Our restriction r ≥ 0, ensured by p ≤ pm, effectively
prevents that. Those considerations are very useful to know in load deployment
situations where snap-back must be avoided.
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