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An analytic solution to the anti-plane problem of an arbitrary inclusion
within an elastic bimaterial under the premise of linear eigenstrains is developed.
The bonding along the bimaterial interface is considered to be homogeneously im-
perfect. The boundary value problem is reduced to a single nonhomogeneous first
order differential equation for an analytic function prescribed in the lower half-plane
where the inclusion is located. The general solution is given in terms of the imper-
fect interface parameter and an auxiliary function constructed from the conformal
mapping function. In particular, the solution obtained for a circular inclusion demon-
strates that the imperfect interface together with the prescribed linear eigenstrains
have a pronounced effect on the induced stress field within the inclusion and show
a strong non-uniform behaviour especially when the inclusion is near the imperfect
interface. Specific solutions are derived in a closed form and verified with existing
solutions.
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1. Introduction

The notion of an inclusion is that it represents a subdomain of the host
material body. The elastic analysis of said inclusion undergoing a prescribed
uniform stress free strain is a classic topic and is commonly referred to as the
Eshelby problem. Eshelby [5], in his pioneering work, solved the problem of
an ellipsoidal subdomain within an infinite isotropic elastic material subjected
to uniform stress free transformations and he proved that the stresses within
the inclusion must be constant. Since his celebrated work, a tremendous amount
of effort has been devoted to the study of the Eshelby problem (see, for exam-
ple, [30] for a detailed literature review). Other inclusion shapes that have been
investigated include cuboidal inclusions [3] and polygonal inclusions [15, 7, 25].
While various methods have been developed to study Eshelby’s problem, the
Green’s function approach appears to be the most common. However, due to the
non-trivial integration, the Green’s function approach cannot be readily applied
to solve problems associated with more complex inclusion shapes. As a result,
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Ru [17] proposed a method based on conformal mapping and analytic continu-
ation to study arbitrary shaped inclusions in a plane or half-plane.

Exciting real world examples that lead to the Eshelby problem are numerous.
For instance, passivated interconnect lines, isolation trenches (see [17]) and in the
construction of tunnels in geologic strata (see [21]). Over the past years, extensive
studies have been undertaken to model such problems by adopting a simplified
approach where the inclusion is located in a half-plane [9, 8, 10, 24, 28, 13, 12].
However, this approach is not general enough and in some practical cases such as
those encountered in electronic packaging [6] it is relevant to consider an inclusion
within one of two jointed elastic half-planes [1, 29, 18, 27]. It should be mentioned
that in all of the aforementioned studies the eigenstrains within the inclusion
are assumed to be uniform. Such a restriction is limiting because most electronic
devices (such as electronic chips, field effect transistors) the eigenstrains exhibit
non-uniform behaviour. Hence, the impact of non-uniform eigenstrains on the
induced stress fields is of significant interest.

Sharma et al. [19] considered dilatational Gaussian and exponential eigen-
strains over a single ellipsoidal domain. Shodja et al. [20] studied the effects of
nonuniform eigenstrains over a nested domain of ellipsoidal inclusions. Kamali

et al. [11] developed a semi-analytical method to study the interaction between
a screw dislocation with embedded multi-inhomogeneities of arbitrary shape in-
corporating imperfect bonding. The work is based on extremization of the total
potential energy of the medium and incorporates the singularity as well as the
surface/interface geometry. Rahman [16] and Nie et al. [14] investigated an
ellipsoidal and elliptic inclusion subject to polynomial and linear eigenstrains,
respectively. Recently, Chen [2] has obtained closed form solutions for an elliptic
inclusion in an entire plane subject to linear eigenstrains in antiplane elasticity.
In all the aforementioned works, even though the eigenstrains are non-uniform,
the limiting assumption of perfect bonding across material boundaries is uti-
lized. Furthermore, only simple shapes are investigated and in the majority of
the works the Green’s function approach is applied to the solution process. It
is worth mentioning that within this area of research there exists a plethora of
other contributions but for the sake of brevity they are not cited.

The assumption of perfect bonding between material boundaries is a conve-
nient idealization to significantly simplify the analysis. This limiting approach
prevents the study of more realistic imperfect interface which is capable of de-
scribing interface damage (such as microcracks, impurities and debonding). While
this model has been used extensively in the area of composite mechanics [22, 23],
it has received little attention in the modeling of jointed half-planes. Recently,
Wang et al. [26] utilized Ru’s approach and explored the role of an imperfect
interface between two dissimilar media on the internal stress field within an ar-
bitrary inclusion subject to a uniform eigenstrain (i.e. a thermal inclusion). The
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results showed that the imperfect interface description does have an impact on
the elastic fields. Hence, it would be of great practical and theoretical interest to
investigate the problem of an inclusion of arbitrary shape with linear eigenstrains
located in one of two imperfectly bonded dissimilar materials in antiplane elastic-
ity. The results from this work will have great benefits to the design of electronic
devices.

The formulation of the basic boundary value problem for an arbitrary shaped
inclusion within one of the two imperfectly bonded dissimilar half-planes subject
to linear eighenstrains in antiplane elasticity is presented in Section 2. In Section
3 the boundary value problem is reduced to a single first order nonhomogenous
linear differential equation for an analytic function in the lower half-plane. In Sec-
tion 4 we discuss a few limiting cases where the exact solution to the stress field is
derived in terms of the auxiliary function. Also we reproduce the results given by
[2] when the upper and lower half planes are identical. Section 5 outlines detailed
results to illustrate the significant effects of the imperfect interface and the linear
eigenstrains on the induced elastic fields within an inclusion of circular shape.

2. Basic equations and formulation

2.1. Basic equations

In a three dimensional Cartesian system, consider an isotropic, homogeneous
elastic domain undergoing anti-plane deformation determined by the out-of-
plane displacement along the x3 direction. The state of antiplane strain is defined
as one in which the Cartesian scaler component of the displacement field takes
the form

(2.1) u1(x1, x2, x3) = u2(x1, x2, x3) = 0, u3 = u3(x1, x2).

It follows from this that the only non-zero stress components are determined via
σ3β = µu3,β where µ is the shear modulus, the ′,′ implies differentiation with
respect to x1 and x2, respectively and (β = 1, 2). Thus, at all points in the body,
equilibrium is satisfied provided the displacement field is harmonic. Hence, one
can always represent the anti-plane stresses and the out-of-plane displacement
by a complex potential f(z) where z = x1 + ix2 is the complex coordinate as

(2.2) σ31 − iσ32 = f ′(z), u3(x1, x2) =
1

µ
Re[f(z)],

where µ represents the shear modulus and ′ denotes the derivative with respect
to the complex variable. In addition, the shear traction on a directed curve from
point A to B in the complex plane can be written in terms of f(z) as

(2.3) T =

B
∫

A

(σ31dx2 − σ32dx1) = Im[f(z)].
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2.2. Formulation

Consider two dissimilar isotropic and homogeneous half-planes imperfectly
bonded along the real axis. Let the lower half-plane contain an internal sub-
domain of arbitrary shape which undergoes linear anti-plane stress free shear
eigenstrains (ǫ∗13, ǫ∗23). Let Ω2 denote the upper half-plane, Ωo and Ω1 denotes
the subdomain and its supplement to the lower half-plane, respectively and Γ
be the interface separating Ωo and Ω1. Throughout the paper, the subscripts
0, 1, 2 are used to identify the respective quantities in Ωo, Ω1 and Ω2.

In the following analysis, we= assume the eigenstrains, ǫ∗13 and ǫ∗23, to be
linear functions in x1 and x2 and given as

(2.4) ǫ∗13 = a0 + a1x1 + a2x2, ǫ∗23 = b0 + b1x1 + b2x2,

where ak and bk, k = 0, 1, 2 are six arbitrary and real coefficients that can be
determined from experiments.

In anti-plane elasticity, the eigenstrains, ǫ∗13 and ǫ∗23, are related to the out-
of-plane eigendisplacement, u∗

3(x1, x2), through the kinematic relations

(2.5) 2ǫ∗13 = u∗

3,1, 2ǫ∗23 = u∗

3,2,

where the ′,′ implies differentiation with respect to x1 and x2, respectively. It
should be noted that although the total strain is related to the total displacement
gradient field, in the more general case, the displacement u∗

3(x1, x2) may not
satisfy Laplace’s equation exactly. Hence, we only consider a compatible linear
eigenstrain field.

The eigenstrains given in (2.4) must satisfy a comptability equation to ensure
that a unique out-of-plane displacement is obtained. Using (2.5) the compatibil-
ity equation is

(2.6) ǫ∗13,2 = ǫ∗23,1,

from which we find that a2 = b1 ensuring that (2.4) is compatible. In view of the
aforementioned, it can be readily shown that the out-of-plane eigendisplacment
can be expressed in terms of the complex variable, z, and its conjugate as

(2.7) u∗

3(z, z) = c0z + c0z + c1z
2 + c1z

2 + c2zz,

where

(2.8) c0 = a0 + ib0, c1 =

(

a1 − b2 + 2b1i

4

)

, c2 =

(

a1 + b1

2

)

.



Two imperfectly bonded half-planes. . . 619

In this study, the two half-planes are assumed to be bonded imperfectly
through the real axis and perfect bonding conditions are prescribed at the bound-
ary of the arbitrary inclusion. Using equations (2.2), (2.3) the boundary value
problem for the imperfectly bonded jointed half-planes takes the form

(2.9)

(f1(z) − f1(z)) = (f2(z) − f2(z)),

(f ′

1(z) − f ′

1(z)) = αi

[

1

µ2
(f2(z) + f2(z))

− 1

µ1
(f1(z) + f1(z))

]

, x2 = 0,

(f1(z) − f1(z)) = (f0(z) − f0(z)),

(f1(z) + f1(z)) = (f0(z) + f0(z)) + 2µ1u
∗

3(z, z), z ∈ Γ,

f1(z) = O(1), |z| → ∞ (x2 ≤ 0),

f2(z) = O(1), |z| → ∞ (x2 ≥ 0),

where α is an interface constant determined by the geometric and material prop-
erties of the interphase layer. Note that the relations along the real axis represent
a continuity of tractions and a jump in the out-of-plane displacement whereas
the conditions at the interface Γ represent the continuity of tractions and dis-
placements. Thus, three analytic functions, fk(z), (k = 0, 1, 2), are determined
by conditions (2.9).

To accommodate an inclusion of arbitrary shape the technique of conformal
mapping is employed. According to the Riemann mapping theorem, there exists
a function [4]

(2.10) z = ω(ξ) =
(

Rξ +
∞

∑

k=0

dkξ
−k

)

where R is a real constant and ω(ξ) is univalent and analytic for |ξ| ≥ 1 and
ω′(ξ) 6= 0 for |ξ| ≥ 1 which maps the exterior of the inclusion conformally onto
the parametric plane (ξ : |ξ| ≥ 1). In many practical examples, the infinite series
appearing above can be truncated and replaced with reasonable accuracy by
a polynomial in 1/ξ which includes only a finite number of terms (say M).

Ru [17] suggested a procedure that utilizes conformal mapping and analytic
continuation to derive exact solutions for inclusions of arbitrary shape. The idea
is that there exists a function, D(z), which satisfies the condition

(2.11) z = D(z), z ∈ Γ,

which is analytic in the exterior of Γ except at infinity where it has a pole of
finite degree determined by the asymptotic behaviour

(2.12) D(z) → P (z) + O(1), |z| → ∞.
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3. General solution

Let us now proceed with the derivation of the general solution to the problem
in terms of function D(z) and the associated polynomials P (z) and H(z). To
begin, let us first consider the interface condition in (2.9) along Γ which can be
written into the equivalent form

(3.1) f0(z) =

f1(z) − µ1[c0z + c0D(z) + c2zD(z) + c1z
2 + c1D(z)D(z)], z ∈ Γ.

Since the left and right hand sides of (3.1) are analytic in the lower half-plane
inside and outside the curve Γ , respectively, the continuity condition (3.1) en-
sures that any one of terms can be extended analytically across Γ . Hence, we
can define the function ∆(z) as follows

(3.2) ∆(z) =











f1(z) − µ1[c0z + c0D(z) + c2zD(z)

+c1z
2 + c1D(z)D(z)], z ∈ Ω1,

f0(z), z ∈ Ω0.

It is clear that ∆(z) is continuous across Γ and analytic in the whole lower half
plane. In particular, its asymptotic behaviour at infinity is described by

(3.3) ∆(z) → −µ1[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)],

|z| → ∞(x2 ≤ 0),

where H(z), a polynomial in z, is the principle part of the product D(z)D(z) at
infinity, namely

(3.4) D(z)D(z) → H(z) + O(1), |z| → ∞.

It follows from (3.2) that

(3.5) f1(z) = ∆(z) + µ1[c0z + c0D(z)

+ c2zD(z) + c1z
2 + c1D(z)D(z)], z ∈ Ω1.

Now the two remaining interface conditions along the real axis can be written
as

(3.6)
2αi

µ2
f2(z) + αi

(

1

µ2
− 1

µ1

)

f1(z) − f ′

1(z)

= αi

(

1

µ2
+

1

µ1

)

f1(z) − f ′

1(z), x2 = 0.
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Substitution of (3.5) into (3.6) and noting that D(z) and its derivative are ana-
lytic in the upper half plane yields

(3.7)
2αi

µ2
f2(z) − ∆′(z) + αi

(

1

µ2
− 1

µ1

)

∆(z)

+ µ1[c0 + c0D
′(z) + c2D(z) + c2zD′(z) + 2c1z + 2c1D(z)D′(z)]

− αiµ1

(

1

µ2
+

1

µ1

)

[c0z + c0D(z) + c2zD(z) + c1z
2 + c1D(z)D(z)]

= −∆′(z) + αi

(

1

µ2
+

1

µ1

)

∆(z)

+ µ1[c0 + c0D′(z) + c2D(z) + c2zD′(z) + 2c1z + 2c1D(z)D′(z)]

− αiµ1

(

1

µ2
− 1

µ1

)

[c0z + c0D(z) + c2zD(z) + c1z
2 + c1D(z)D(z)], x2 = 0.

The left and right hand sides of (3.7) are analytic in the upper and lower half
planes, respectively, and approach the same polynomial

(3.8) µ1[c0 + c0P ′(z) + c2P (z) + c2zP ′(z) + 2c1z + c1H ′(z)]

− αiµ1

(

1

µ2
− 1

µ1

)

[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)]

+ µ1[c0 + c0P
′(z) + c2P (z) + c2zP ′(z) + 2c1z + c1H

′(z)]

− αiµ1

(

1

µ2
+

1

µ1

)

[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)], |z| → ∞.

Thus, it is concluded that the left and right hand sides are equal to the above
polynomial in the upper and lower half planes, respectively. It follows that

(3.9)
2αi

µ2
f2(z) = ∆′(z) − αi

(

1

µ2
− 1

µ1

)

∆(z) + αiµ1

(

1

µ2
+

1

µ1

)

× [c0(D(z) − P (z)) + c2z(D(z) − P (z)) + c1(D(z)D(z) − H(z))]

− µ1[c0(D
′(z) − P ′(z)) + c2(D(z) − P (z))

+ c2z(D′(z) − P ′(z)) + c1(2D(z)D′(z) − H ′(z))]

+ µ1[c0 + c0P ′(z) + c2P (z) + c2zP ′(z) + 2c1z + c1H ′(z)]

− αiµ1

(

1

µ2
− 1

µ1

)

[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)], x2 > 0,

in the upper half plane and

(3.10) ∆′(z) − αi

(

1

µ2
+

1

µ1

)

∆(z) = G(z), x2 < 0,
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in the lower half plane, where

(3.11) G(z) = µ1

{

c0[D′(z) − P ′(z)] + c2[D(z) − P (z)] + c2z[D′(z) − P ′(z)]

+ c1[2D(z)D′(z) − H ′(z)]
}

− αiµ1

(

1

µ2
− 1

µ1

)

×
{

c0[D(z) − P (z)] + c2z[D(z) − P (z)] + c1[D(z)D(z) − H(z)]
}

− µ1[c0 + c0P
′(z) + c2P (z) + c2zP ′(z) + 2c1z + c1H

′(z)]

+ αiµ1

(

1

µ2
+

1

µ1

)

[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)].

The condition (3.10) gives a simple nonhomogeneous first-order differential
equation for the unknown function ∆(z) in the entire lower half plane. The
general solution of (3.10) is given explicitly by

(3.12) ∆(z) = exp

[

αi

(

1

µ2
+

1

µ1

)

z

]

×
[

z
∫

z0

G(t) exp

[

−αi

(

1

µ2
+

1

µ1

)

t

]

dt + C0

]

, x2 < 0,

where z0 is an arbitrary selected point in the lower half plane. The path of
integration is taken along an arbitrary curve within the lower half plane and
C0 is an arbitrary constant of integration determined by z0 and the asymptotic
behaviour at infinity. For example, one can choose the point z0 to be −i∞ and
then C0 should be determined so that

(3.13)

∆(z) = −µ1[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)]

+ exp

[

αi

(

1

µ2
+

1

µ1

)

z

]

×
[

z
∫

−i∞

G0(t) exp

[

−αi

(

1

µ2
+

1

µ1

)

t

]

dt

]

, x2 < 0,

G0(t) = µ1

{

c0[D′(t) − P ′(t)] + c2[D(t) − P (t)]

+ c2t[D′(t) − P ′(t)] + c1[2D(t)D′(t) − H ′(t)]
}

− αiµ1

(

1

µ2
− 1

µ1

)

{

c0[D(t) − P (t)] + c2t[D(t) − P (t)]

+ c1[D(t)D(t) − H(t)]
}

, x2 < 0.
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Hence, the solution for the inclusion problem depends on the imperfect interface
parameter, the prescribed linear eigenstrains as well as the auxiliary function
D(z) and the associated polynomials P (z) and H(z). Once ∆(z) has been de-
termined from (3.13) then the entire elastic fields in the whole plane can be
calculated.

In the next section, we discuss some special cases of particular interest.

4. Limiting cases

4.1. Perfect bonding

First, we consider the case when the two elastic half-planes are perfectly
bonded together (ie α=∞). It immediately follows from (3.5), (3.9) and (3.10)
that

∆(z) =µ1

( 1
µ2

− 1
µ1

)

( 1
µ2

+ 1
µ1

)

{

c0[D(z) − P (z)] + c2z[D(z) − P (z)]

+ c1[D(z)D(z) − H(z)]
}

(4.1)

− µ1[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)], x2 < 0,

f1(z) = ∆(z) + µ1[c0z + c0D(z) + c2zD(z) + c1z
2

+ c1D(z)D(z)], x2 < 0,

f2 = −µ2

2

(

1

µ2
− 1

µ1

)

∆(z) +
µ1µ2

2

(

1

µ2
+

1

µ1

)

(4.2)

× [c0(D(z) − P (z)) + c2z(D(z) − P (z)) + c1(D(z)D(z) − H(z))]

− µ1µ2

2

(

1

µ2
− 1

µ1

)

× [c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)], x2 > 0.

In particular, within the inclusion Ω0 we have

(4.3) f0 = µ1

( 1
µ2

− 1
µ1

)

( 1
µ2

+ 1
µ1

)

{

c0[D(z) − P (z)] + c2z[D(z) − P (z)]

+ c1[D(z)D(z) − H(z)]
}

− µ1[c0z + c0P (z) + c2zP (z)

+ c1z
2 + c1H(z)], z ∈ Ω0.

Expressions (4.1-4.3) give the explicit solution for not only the internal stress
field in the inclusion but also for both half planes. The solutions for the elastic
fields depend explicitly on the functions D(z), P (z) and H(z). To the authors
knowledge, no such complete solution for an inclusion of arbitrary shape sub-
jected to linear eigenstrains in a bimaterial has been reported in the literature
for antiplane elasticity.
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4.2. Both half-planes are identical

Now, let us consider the case when the upper and lower half planes are
identical and perfect bonding between the half planes is assumed (i.e. µ1 = µ2).
In this case, the expressions given by (4.1-4.3) reduce to

(4.4) f1 = µ1[c0(D(z) − P (z)) + c2z(D(z) − P (z))

+ c1(D(z)D(z) − H(z))], x2 < 0,

and

(4.5) f0 = −µ1[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)], z ∈ Ω0.

The exact solution for the internal stress field within the arbitrary inclusion in
the entire plane is given by expression (4.5).This expression depends only on the
polynomials P (z) and H(z) and not the function D(z). This result is a huge
benefit since both P (z) and H(z) admit simple forms whereas D(z) requires
the evaluation of the inverse of the mapping function which is often difficult to
handle [18].

To validate our approach consider an elliptic inclusion embedded in the lower
half plane at some point x0 = 0 and y0, (y0 < 0).The functions P (z), H(z) as
well as for completeness the auxiliary function D(z) is given by

(4.6)
D(z) = R2(z − iy0) − iy0 + (

1 − R4

2R2
)(z − iy0)

[

1 +

√

1 −
(

2d

z − iy0

)2]

P (z) =
1

R2
(z − iy0) − iy0, H(z) =

(z − iy0)
2

R4
− 2

iy0

R2
− y2

0.

Assuming the parameters y0 = 0 and c0 = 0, expression (4.5) takes the form

(4.7) f0(z) = −µ1[a1(1 + m)2 − 2b1i(1 − m)2 − b2(1 − m)2]
z2

4
, z ∈ S0,

which is identical to the work of [2] by noting that the coefficients a1, b1, b2 can
be related to [2] through

a1 =
c∗1
2a

, b1 =
c∗2
2a

, b2 =
c∗3
2a

.

4.3. Traction free upper half-plane

Now consider the case when the elastic lower half plane contains an inclusion
of arbitrary shape and a traction free condition along the surface of the lower
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half plane is assumed (i.e. α = 0). It immediately follows from (3.5) and (3.10)
that in the lower half plane the stress field is given by

(4.8) f ′

1(z) = µ1

{

c0[D
′(z) − P ′(z)] + c2[D(z) − P (z)]

+ c2z[D′(z) − P ′(z)] + c1[2D(z)D′(z) − H ′(z)]
}

+ µ1

{

c0[D′(z) − P ′(z)] + c2[D(z) − P (z)]

+ c2z[D′(z) − P ′(z)] + c1[2D(z)D′(z) − H ′(z)]
}

, x2 < 0.

and the internal stress within the arbitrary inclusion is given by

(4.9) f ′

0(z) = µ1

{

c0[D′(z) − P ′(z)] + c2[D(z) − P (z)]

+ c2z[D′(z) − P ′(z)] + c1[2D(z)D′(z) − H ′(z)]
}

− µ1{c0 + c0P
′(z) + c2P (z) + c2zP ′(z) + 2c1z + c1H

′(z)}, z ∈ Ω0.

Expressions (4.8)–(4.9) give the exact solution for the elastic fields of an arbitrary
inclusion in an elastic half-plane subjected to linear eignstrains. It is apparent
that in contrast to the results given in Section 4.2, the internal stresses within the
arbitrary inclusion in a half-plane depends on P (z), H(z) and D(z). Moreover,
comparing (4.8)–(4.9) with (4.4)–(4.5) reveals that the last term on the right
hand side of (4.8) and the first term on the right hand side of (4.9) represent the
effect of the free surface on the lower half plane.

4.4. Rigid upper half-plane

Finally, if the upper half-plane is rigid (i.e. µ2 = ∞)the expressions for the
elastic field within the inclusion and the surrounding material subject to linear
eigenstrains take the form

(4.10) f0(z) = −µ1[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)]

− µ1{c0[D(z) − P (z)] + c2z[D(z) − P (z)] + c1[D(z)D(z) − H(z)]}, z ∈ Ω0

and

(4.11) f1(z) = µ1{c0[D(z) − P (z)] + c2z[D(z) − P (z)]

+ c1[D(z)D(z) − H(z)]} − µ1{c0[D(z) − P (z)]

+ c2z[D(z) − P (z)] + c1[D(z)D(z) − H(z)]}, z ∈ Ω1

where the last terms on the right hand side represent the effect of the rigid upper
half-plane. The solutions are based on the auxiliary function D(z) as well as the
associated polynomials P (z) and H(z).
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5. Effect of imperfect bonding: an example

The aim of the present study is to investigate the effects of imperfect bonding
and linear eigenstrains on the stress fields in two imperfectly bonded elastic half-
planes containing an arbitrary shaped inclusion. For the sake of illustration let
us consider a circular inclusion of radius R centred at the point y = y0 < 0,
(x1 = 0) and is subjected to the following linear eigenstrains

(5.1)
ǫ∗13 = 0.001 + 0.002x1 + 0.0005x2,

ǫ∗23 = 0.00067 + 0.0005x1 + 0.001x2.

In addition, the required functions to describe the circular inclusion are given
by:

(5.2) D(z) =
R2

z − iyo
− iyo, P (z) = −iyo, H(z) = −yo2.

Since the stress fields are directly related to the derivative of ∆(z) let us express
the latter directly. To this end, first write (3.10) in the form

(5.3)
[

∆(z) + µ1[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)]

]

′′

− αi

(

1

µ2
+

1

µ1

)

[

∆(z) + µ1[c0z + c0P (z)

+ c2zP (z) + c1z
2 + c1H(z)]

]

′

= G′

o(z), x2 < 0.

In a similar way to what has been shown before the solution to (5.3) is given by

(5.4) ∆′(z) = −µ1[c0z + c0P (z) + c2zP (z) + c1z
2 + c1H(z)]′

+ exp

[

αi

(

1

µ2
+

1

µ1

)

z

]

×
[

z
∫

−i∞

G′

0(t) exp

[

−αi

(

1

µ2
+

1

µ1

)

t

]

dt

]

, x2 < 0,

where G0(t) is defined as before. In the particular case of a circular inclusion
G0(t) takes the following form

(5.5) G0(t) = µ1

{

− R2

(t + iyo)2
[c0 + c2t + 2iyoc1] +

c2R
2

(t + iyo)
− 2c1R

4

(t + iyo)3

}

− iαµ1

(

1

µ2
− 1

µ1

){

R2

(t + iyo)
[c0 + c2t + 2iyoc1] +

c1R
4

(t + iyo)2

}

.
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In many practical situations such as passivated interconnect lines it is the
internal stress in the inclusion that is important. Thus, to judge the impact
of the imperfect interface on the stress fields within the inclusion let us con-
sider an upper layer that is both soft and hard relative to the bottom layer.
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Fig. 1. Distribution of the shear stress σ31 along the x2 axis for various imperfect interfaces
with µ2 = 0.50µ1 and R = −y0(y0 < 0).
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Fig. 2. Distribution of the shear stress σ32 along the x2 axis for various imperfect interfaces
with µ2 = 0.50µ1 and R = −y0(y0 < 0).
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Solving Eq. (5.4) for the shear stresses distributed along the x2 axis for various
imperfect interface combinations corresponding to a soft and stiff upper layer,
respectively with R = −y0 (y0 < 0) (i.e. the circular inclusion is just in contact
with the real axis) is illustrated in Figs. 1–4. The results clearly demonstrate
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Fig. 3. Distribution of the shear stress σ31 along the x2 axis for various imperfect interfaces
with µ2 = 2µ1 and R = −y0(y0 < 0).
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Fig. 4. Distribution of the shear stress σ32 along the x2 axis for various imperfect interfaces
with µ2 = 2µ1 and R = −y0(y0 < 0).
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that the imperfect interface in conjunction with a linear eigenstrain distribution
has a significant effect on the induced stress field within the inclusion and show
a strong and non-uniform behaviour. Moreover, the limiting cases of perfect
bonding (i.e. α/µ = ∞) and the traction free surface (i.e. α/µ = 0), a pro-
nounced non-uniform effect on the individual stress components is also observed
in all four figures. These results are of major interest to the design of electronic
devices.

6. Conclusions

An analytic solution for the antiplane elastic fields of an arbitrary shaped
inclusion in one of two imperfectly joined dissimilar elastic half-planes is devel-
oped. The boundary value problem is reduced to a nonhomogeneous first order
linear ordinary differential equation for an analytic function defined in the entire
lower half-plane including the inclusion. The exact general solution is derived
in terms of the homogeneous imperfect interface parameter as well as the aux-
iliary function which is constructed from the mapping function associated with
the boundary curve of the inclusion. In particular, for the case of a circular
inclusion, the general solution admits a very simple form and the results con-
vincingly demonstrate that the imperfect interface in conjunction with a linear
eigenstrain distribution has a significant effect on the induced stress field within
the inclusion and show a strong and non-uniform behaviour especially when the
inclusion is near the imperfect interface. Existing solutions for a homogeneous
perfectly bonded bimaterial, two identical perfectly bonded half-planes, a trac-
tion free half-plane and a rigid upper half-plane are obtained as limiting cases
and verified with existing solutions.
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