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This work is focused on the modelling of experimental behaviour of
a bone-shape sample made of aluminium alloy AW5083 under tension. This behaviour
involves propagating instabilities, namely Lueders bands and the Portevin–Le Chate-
lier effect. A series of experiments was performed at room temperature for three
loading rates, showing the instabilities and failure. In the paper a large strain thermo-
visco-plasticity model is proposed and used for finite element simulations. This model
contains initial softening and a hardening function based on the Estrin–McCormick
concept to represent serrations and travelling shear bands. The issues of instability
sources and regularisation are considered. The predictive capabilities of the model
are examined. The proposed models are able to reproduce both Lueders bands and
the PLC effect. Simulation results show good agreement with experiments regarding
force–displacement diagrams and temperature levels.
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1. Introduction

Some technologically important materials, for instance steel or alu-
minium alloys, can exhibit propagative instability phenomena, namely Lueders
bands and/or the Portevin–Le Chatelier (PLC) effect. The instabilities can lead
to material degradation and have a negative influence on the material perfor-
mance, leading to faster failure. They can be observed in a certain range of strain
rates and temperatures. They can have a transient or recurring character and
they can occur during one process, see for example [1].

The aim of the paper is to present the numerical simulation of the experi-
mentally observed response of dog-bone aluminium specimens in tension. The
experiments are performed at room temperature, but three loading rates are ex-
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amined. In each case both the transient Lueders phenomenon and the recurring
PLC-type instabilities are observed. The numerical analysis of the experiments
is performed with a finite strain thermo-visco-plasticity model. In the model the
yield function, which involves strain-rate softening, is based on the concept of
McCormick [2]. The comparison of the results of experiments and simulations
serves the purpose of verification of the numerical model.

The first description of Lueders bands was published as early as 1860 in [3].
In a metal sample, after the onset of yielding some softening can occur and
then a stationary shear band is formed. When the material in the band starts
to harden, on its edge a plastic front forms and the band moves through the
sample, which is associated with a plateau in the force–displacement diagram.
When the band reaches the opposite end of the sample, a hardening phase with
uniform deformation in the whole sample is observed. More information about
Lueders bands propagation can be found for instance in [4].

The Portevin–Le Chatelier effect was first described in [5]. Repetitive changes
from hardening to softening and again to hardening called serrations are then
present in the force–displacement diagrams. The stress jumps are associated with
the formation and movement of a localisation band in the sample or with the
band decay and reappearance at a different place. The PLC effect is commonly
related to the so-called Dynamic Strain Aging (DSA) which is in turn related to
the negative strain rate sensitivity of a material. At the microscopic level the plas-
tic flow in metals can be explained by the motion of dislocations. This motion can
be stopped by solute atoms or other dislocations, causing a dislocation pile-up.
When the stress grows sufficiently, the dislocations are freed and the process can
repeat itself. More information about the micro-mechanical origin of the PLC ef-
fect can be found for instance in [6], while the DSA was already discussed in [7, 8].

Several studies regarding the Lueders bands and the PLC effect are available
in the literature. Most experiments showing Lueders bands are performed on
samples loaded under tension, for example in [9], but also in shear [10, 11] and
in bending [12–14]. The materials that exhibit this kind of behaviour are steel
[15, 16] and aluminum alloys [17, 18], but also shape-memory alloys [19, 20]. The
PLC effect occurs in aluminum alloys at room temperature [21, 22] and in steels
at elevated temperature [23, 24], but also in Nickel-based alloys [25]. The PLC
bands can be observed both in tension [26] and in shear [10, 27]. At temperatures
close to absolute zero a process similar to the Dynamic Strain Aging can also
occur [28].

For some materials Lueders bands and the PLC effect can appear during one
process (first the Lueders bands and then the PLC effect), see [1, 29]. In a few
studies the two effects are considered together in the investigation of Al-Mg
[10, 30] and steel [31]. Figure 1 in [1] presents load-elongation diagrams obtained
for α-iron for the strain rate equal to 9.7 · 10−4 1/s and different temperatures
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(57 degrees to 329 degrees Celsius). For lower temperatures a clear Lueders
plateau is visible followed by saturation hardening. When the temperature in-
creases, PLC serrations start to show and when the temperature exceeds 300 deg
Celsius the serrations disappear and the Lueders plateau is hardly visible. In [29]
a similar phenomenon can be observed for aluminium alloy 5456Al for the strain
rate equal to 5.4·10−4 1/s and temperatures ranging from 173K to 333K̇. A broad
review of experimental findings concerning the PLC effect can be found in [32].

Different models have been used to simulate the propagative instability phe-
nomena, but full thermo-mechanical coupling has rarely been considered. In [33]
a multi-linear hardening approach (softening and then hardening) for the Lued-
ers bands and negative strain rate for the PLC effect are adopted in the algorithm
of wave propagation. A model which is a phenomenological description of DSA
was proposed by McCormick [2]. In the model an additional variable, called
strain aging time, is used to introduce repetitive strain rate softening and hard-
ening phases. Typical plots showing how the strain aging time depends on the
increasing deformation are shown in [34]. The approach, also called the Estrin–
McCormick model, was later extended by other authors, for instance [35–39].
A different model based on thermodynamic features was proposed in [40, 41].
Numerical aspects of the finite element (FE) analysis of the PLC effect, including
the strain rate sensitivity, is presented in [42].

In the present paper experiments conducted on dog-bone samples, made of
aluminium alloy AW5083 and loaded under tension, are compared with numeri-
cal simulations performed using large strain thermo-visco-plasticity. The exper-
iments are carried out for three (average) strain rates: 4.3 · 10−2, 4.3 · 10−3 and
4.3 · 10−4 1/s with three repetitions for each considered strain rate. During the
experiments the strain distribution is monitored by using a DIC system and
the temperature distribution is recorded with a thermal imaging camera. The
thermo-plastic model [43, 44] augmented to include the rate-dependence (a vis-
cous term and a recurring strain-rate softening term) is used. A multi-linear
softening-hardening model for Lueders bands and the Estrin–McCormick rela-
tions for the PLC effect are employed. The model includes full thermo-mechanical
coupling with thermal expansion, thermal softening in the yield function, plastic
heating, and Fourier’s law formulated in the current configuration. The Huber–
Mises–Hencky definition of equivalent stress is applied in the so-called consis-
tency visco-plasticity formulation, proposed in [33] and now employed in the
formulation for finite deformations.

The Lueders bands model was considered by the authors in [45] and the
Estrin–McCormick model was employed in the simulation study of PLC bands
presented in [34]. Here, the models are combined and equipped with additional
switch functions to turn on and off the parts of the description. Optionally,
a gradient-enhancement in the form of temperature averaging is taken into ac-
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count. The models are implemented by using the AceGen code generator to profit
from the possibility of automatic differentiation, and computations are performed
in the AceFEM which is an FE environment within the Wolfram Mathematica,
see [46].

The paper is organised as follows. Section 2 provides an overview of the
experiments. In Section 3 a brief description of the constitutive model is pre-
sented. Section 4 contains both the experimental and computational results.
Force–displacement plots and temperature evolution at the middle point of the
sample are compared, as well as temperature and strain distributions in the sam-
ple. Section 5 presents a summary and conclusions with some prospect of future
work.

2. Experiments

The experiments which are used for the verification of the proposed model are
introduced in this section. At first, the specimens are presented, followed by the
testing and measuring devices. Afterwards, the experimental procedure is briefly
explained and, finally, the obtained force, displacement and temperature data
are shown and analysed. It is worth mentioning that the aim of the experiments
at this stage is simply to verify the ability of the model to represent the plastic
instability effects of Lueders and PLC bands. Thus, simple tension tests were
chosen as the basis of this proof of concept, in order to single out the desired
effects and thereby avoid different material effects, which might be introduced
by more elaborate experiments.

2.1. Specimens

The experiments were performed at the Institute of Mechanics, TU Dort-
mund University, using specimens made of the aluminium alloy AW5083. All
samples were water cut from a sheet metal plate with an orientation of zero de-
grees between the tension axis and the rolling direction of the plate. The chosen
geometry can be seen in Fig. 1; it is based on DIN 50125 for simple tension tests.

Fig. 1. Sample shape and dimensions in mm. Thickness of the specimen is 2 mm.
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2.2. Experimental setup

In order to later compare temperature as well as force and displacement data
from experiments and model predictions, the respective data is obtained by using
the Digital Image Correlation (DIC) system Aramis with 4 Mpx from GOM, as
well as the thermography (TG) system ImageIR 8320hp from InfraTec. The use
of both systems requires a speckle pattern to be applied to one side of each
specimen and a homogeneous black coating with a known emission coefficient
which is applied to the other side prior to testing. It is worth mentioning that this
specific TG system measures electro-magnetic waves with a wavelength between
2.0 and 5.7µm (medium-wavelength-window). In this bandwidth, the emission
coefficients of most paints vary significantly, so that it is not possible to place
both systems on the same side of the specimen. Hence, the two systems must be
placed on opposing sides. After clamping the specimens and waiting for an initial
steady temperature state, the specimens were loaded displacement controlled
with a constant rate of the cross head until failure, using the tensile machine
LFM 100-T200 from Walter+Bai with a nominal load of 100 kN. More precisely
speaking, three different rates were used to gain a first impression about the rate
dependence of the plastic instabilities and to verify the model’s ability to capture
this dependence. While the constant displacement rate of the cross head does
not lead to a constant strain rate within the specimen, a rough estimate of the
average strain rate can nevertheless be made, see Table 1 and Fig. 2. Although it

Table 1. Loading rates and average strain rates of the experiments.

Experiment No. Displacement rate [mm/s] Average strain rate [1/s]
1, 2, 3 0.06 4.3 · 10−4

4, 5, 6 0.60 4.3 · 10−3

7, 8, 9 6.00 4.3 · 10−2

for an initial steady temperature state, the specimens were loaded displacement controlled with a constant rate of the
cross head until failure, using the tensile machine LFM 100-T200 from Walter + Bai with a nominal load of 100 kN.
More precisely speaking, three different rates were used to gain a first impression about the rate dependence of the
plastic instabilities and to verify the model’s ability to capture this dependence. While the constant displacement rate
of the cross head does not lead to a constant strain rate within the specimen, a rough estimate of the average strain
rate can nevertheless be made, see Tab. 1 and Fig. 2. Although it is well established that the PLC effect is not only
strain rate but also temperature dependent, all experiments were performed at room temperature for this initial proof of
concept.

Table 1: Loading rates and average strain rates of the experiments.

Experiment No. Displacement rate [mm/s] Average strain rate [1/s]

1, 2, 3 0.06 4.3 · 10−4

4, 5, 6 0.60 4.3 · 10−3

7, 8, 9 6.00 4.3 · 10−2
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Figure 2: Local engineering strain in tension direction (–) at the centre point of the specimen and estimated average
strain (- -) versus time for representative experiments with low, medium and high strain rates (left to right).

2.3 Experimental data

An initial analysis of observed effects is performed in this section by showing mainly local point data versus time.
Further details of the full field data can be found in Sect. 4, where experimental data is compared to the predicted
results of a simulation.

Elastic response The initial mechanical material behaviour appears to be linear elastic and independent of the chosen
strain rates, as can be seen by the parallel initial force–displacement curves in Fig. 3. The slight offset of the black
curves (highest strain rate) is probably rather due to the impulse-like start of the experiment, leading to a slight initial
slip, than induced by viscous response of the material. Although no unloading stage was incorporated to verify the
claim of elasticity, the drop in temperature due to the elastic Gough-Joule effect likewise indicates elastic material
behaviour, see Fig. 4.

Initial plastic response – Lueders bands The plastic response of the material starts with a sharp drop in reaction
force and a classic, albeit small Lueders plateau. The shear bands are clearly visible in the DIC and thermography
images. It is worth mentioning that all dissipative processes like the movement of an already existing band or the
appearance of a new band is always related to an increase in local temperature, such that the tracking of active bands is
slightly simpler in the TG images, cf. Fig. 5, at least for materials with a rather high thermal conductivity. Furthermore,

4

Fig. 2. Local engineering strain in tension direction (–) at the centre point of the specimen
and estimated average strain (- -) versus time for representative experiments with low,

medium and high strain rates (left to right).
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is well established that the PLC effect is not only strain rate but also temperature
dependent, all experiments were performed at room temperature for this initial
proof of the concept.

2.3. Experimental data

An initial analysis of observed effects is performed in this section by showing
mainly the local point data versus time. Further details of the full field data can
be found in Section 4, where experimental data is compared to the predicted
results of a simulation.

1

Fig. 3. Force versus cross head displacement of the tension machine. Maximum load
capacity decreases with increasing strain rate. Numbers (exp no.) in legend indicate

numbering of respective experiment, cf. Table 1.

Fig. 4. Temperature increase at centre point of specimen versus load factor λ which
increases from 0 to 1 with imposed elongation (enabling presentation of all diagrams in one
figure). Numbers (exp no.) in legend indicate numbering of respective experiment, cf. Table 1.
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Elastic response. The initial mechanical material behaviour appears to be linear
elastic and independent of the chosen strain rates, as can be seen by the parallel
initial force–displacement curves in Fig. 3. The slight offset of the black curves
(highest strain rate) is probably rather due to the impulse-like start of the exper-
iment, leading to a slight initial slip, than induced by a viscous response of the
material. Although no unloading stage was incorporated to verify the claim of
elasticity, the drop in temperature due to the elastic Gough–Joule effect likewise
indicates elastic material behaviour, see Fig. 4.

Initial plastic response – Lueders bands. The plastic response of the material
starts with a sharp drop in reaction force and a classic, albeit small Lueders
plateau. The shear bands are clearly visible in the DIC and thermography im-
ages. It is worth mentioning that all dissipative processes like the movement
of an already existing band or the appearance of a new band is always related
to an increase in local temperature, such that the tracking of active bands is
slightly simpler in the TG images, cf. Fig. 5, at least for materials with a rather
high thermal conductivity. Furthermore, the point in time of initial plastification

(a) Temperature field during the
appearance of Lueders bands at 1.5 s
and 1.7 s for an experiment with

medium strain rate.

(b) Tensile strain field during the
appearance of Lueders bands at 1.5 s
and 1.7 s for an experiment with

medium strain rate.

Fig. 5. Lueders bands as observed by TG (a) and DIC (b) system. Active band fronts can
better be identified using a TG system. The TG system is positioned opposite the DIC

system, which explains the seemingly different orientations of bands.
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Figure 6: Global reaction force, local engineering strain in tension direction and local temperature increase at the centre
point of the specimen versus time for a representative experiment with high strain rate. Temperature increase starts
with the onset of plasticity and the initial drop in reaction force.

serrations as well as the overall load capacity decreases with increasing strain rate. Especially the latter effect appears
counter-intuitive at first, since viscosity would usually lead to an increase of forces. However, the complex material
effects within the alloy at hand lead to an overall reduction of the maximum applicable force with increasing strain
rate. This effect is not necessarily related to the strain rate alone, but can also be related to a change in temperature and
thermal softening, which is caused by the increase of the strain rate, allowing less time for the heat to flow.

Material response close to failure At some elevated loading stage, one of the currently active bands further localises
and a macro crack appears along the respective shear band, see Figs. 7, 18 and 16. The macro crack evolves very rapidly,
i.e. the specimen exhibits (quasi) brittle damage failure at room temperature.

Figure 7: Final failure mode with sample centre marked by red dot for samples no. 3 and 7.

The exact position of failure cannot be determined a priori and depends for instance on micro defects and further
imperfections of each sample. The same is true for the final ductility of the material, prior to failure, which differs
for almost all experiments, see Fig. 3. Hence, a comparison of the obtained data with a deterministic model is only
reasonable up to a certain loading stage. This can also be seen in the local temperature data of Fig. 4, which is almost
identical for all experiments of a certain strain rate, but tends to differ significantly close to the stage of cracking, since
the position of the crack and the dissipation source related to its formation is different for all experiments.

With this data at hand, a model is proposed in the following, which captures some of the main effects observed.
Furthermore, the experimental data is used to verify the ability of the proposed model to represent the desired features.

6

Fig. 6. Global reaction force, local engineering strain in tension direction and local
temperature increase at the centre point of the specimen versus time for a representative

experiment with high strain rate. Temperature increase starts with the onset of plasticity and
the initial drop in reaction force.

can therefore also be determined by observing whether the temperature of the
specimen starts to increase (at some material point, i.e. the location of the first
Lueders band), see e.g. Fig. 6.

Plastic response – PLC bands. The material response following the Lueders
plateau is characterised by overall, non-linear plastic hardening as well as by
the appearance of PLC bands. As in the previous case, the PLC effect is clearly
visible in the serrated force–displacement curves, see Fig. 3, as well as in the
DIC and TG images, see Figs. 16 and 18. A close analysis shows that the bands
not only propagate through the entire sample, but that new bands appear at
seemingly random locations, propagate some random distance, sometimes switch
orientation or disappear again. Comparing the force–displacement diagrams for
different strain rates in Fig. 3 shows that the amplitude of the serrations as well
as the overall load capacity decreases with an increasing strain rate. Especially,
the latter effect appears counter-intuitive at first, since viscosity would usually
lead to an increase of forces. However, the complex material effects within the
alloy at hand lead to an overall reduction of the maximum applicable force with
increasing strain rate. This effect is not necessarily related to the strain rate
alone, but can also be related to a change in temperature and thermal softening,
which is caused by the increase of the strain rate, allowing less time for the heat
to flow.

Material response close to failure. At some elevated loading stage, one of the
currently active bands further localises and a macro crack appears along the re-
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Fig. 7. Final failure mode with sample centre marked by red dot for samples no. 3 and 7.

spective shear band, see Figs. 7, 18 and 16. The macro crack evolves very rapidly,
i.e. the specimen exhibits (quasi) brittle damage failure at room temperature.

The exact position of failure cannot be determined a priori and depends, for
instance, on micro defects and further imperfections of each sample. The same
is true for the final ductility of the material, prior to failure, which differs for
almost all experiments, see Fig. 3. Hence, a comparison of the obtained data
with a deterministic model is only reasonable up to a certain loading stage. This
can also be seen in the local temperature data of Fig. 4, which is almost identical
for all experiments of a certain strain rate, but tends to differ significantly close
to the stage of cracking, since the position of the crack and the dissipation source
related to its formation is different for all experiments.

With this data at hand, a model is proposed in the following, which captures
some of the main effects observed. Furthermore, the experimental data is used
to verify the ability of the proposed model to represent the desired features.

3. Modelling framework

In this section essential aspects of the model proposed are summarised. This
includes the specification of the thermomechanically coupled constitutive rela-
tions as well as aspects of regularisation and implementation.

3.1. Material model

The analysed aluminium sample is modelled by using geometrically non-
linear thermo-elasto-plasticity based on [47, 48]. The material description pre-
sented in this section is an extension of the model used in [34] for simulations of
the PLC effect.

We consider a deformable continuous body consisting of isotropic material.
Every particle of the body is denoted with the vector X in the referential (initial)
configuration and with the vector x(X, t) in the current placement at time t. The
deformation gradient and its multiplicative decomposition are given as follows:

(3.1) F =
∂x

∂X
, F = FeFpFθ,
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where Fe, Fp and Fθ represent the elastic, plastic and thermal parts of defor-
mation, cf. [48]. The last part related to thermal expansion of the material is
assumed to be purely volumetric and is defined as:

(3.2) Fθ = [Jθ]1/3I, Jθ = det(Fθ) = exp(3αT [T − T0]),

where αT is the linear thermal expansion coefficient, T denotes the tempera-
ture of the particle and T0 denotes its reference (initial) temperature. Moreover,
I represents the second order identity tensor.

It is assumed that the Helmholtz free energy, which is a function of the elastic
left Cauchy–Green deformation tensor be = Fe[Fe]T, hardening variable α and
temperature T , is additively decomposed into elastic, plastic and thermal parts,
i.e.

(3.3) ψ(be, α, T ) = ψe(be) + ψp(α) + ψθ(T ).

The elastic part is specified in the following form

(3.4) ψe(be) =
1

2
G
[
[Je]−2/3tr(be)− 3

]
+

1

2
Kln(Je)2,

where tr(•) denotes the trace of tensor •, Je = det(Fe) > 0 is the determinant
of the elastic part of the deformation gradient, while G and K are the elastic
shear and bulk moduli, respectively. The plastic part of the free energy function
ψp(α) depends on the applied plastic hardening description, see also Appendix A,
whereas the purely thermal part is assumed in a classical form, cf. [47], resulting
in a constant heat capacity.

The yield function is written in terms of the Kirchhoff stress tensor

(3.5) τ = 2
∂ψe

∂be
be

and is defined as follows

(3.6) Fp(τ , α, α̇, T ) = f(τ )−
√

2

3
σy(α, α̇, T ) ≤ 0,

where f(τ ) is a stress measure which defines the yield surface and σy(α, α̇, T )
represents the evolving yield strength dependent on the hardening variable, its
rate α̇ and temperature. In particular, the Huber–Mises–Hencky (HMH) stress
measure is applied:

(3.7) f(τ ) =
√

2J2, J2 =
1

2
τ 2
dev · I, τdev = τ − 1

3
tr(τ )I.
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The associative flow rule applied in the model has the following form, cf. [47, 49],

(3.8) − 1

2
Lvbe = γ̇Npbe,

where Lvbe denotes the Lie derivative of the elastic left Cauchy–Green defor-
mation tensor, Np = ∂Fp/∂τ is the normal to the yield surface and γ̇ is the
plastic multiplier. The description is completed with the Kuhn–Tucker loading-
unloading conditions for plastic multiplier γ̇ and yield function Fp, i.e.:

(3.9) γ̇ ≥ 0, Fp ≤ 0, γ̇Fp = 0.

The relation between the rate of hardening variable and the plastic multiplier is
α̇ =

√
2/3γ̇.

The yield strength for the employed thermo-visco-plastic model consists of
three contributions, i.e.

(3.10) σy(α, α̇, T ) = σH(α, T ) + σV (α̇) + σB(α, α̇).

The first one represents linear strain hardening, saturation hardening and ther-
mal softening in the following form

(3.11) σH(α, T ) =[
σy0 + S1(α)Hα+ S2(α)S3(α)[σyf − σy0][1− exp (−δα)]

][
1−HT [T − T0]

]
,

whereH is a scalar parameter (positive for hardening and negative for softening),
σy0 and σyf are initial and final yield strengths, respectively, δ is a saturation
parameter and HT is a positive-valued thermal softening modulus. The thermal
softening term 1 − HT [T − T0] in the above equation is non-negative only for
particular temperatures ranges, i.e. for T < T0 + 1/HT . Within the numerical
simulations presented in the subsequent sections this inequality is fulfilled. The
three quantities S1(α), S2(α) and S3(α) appearing in Eq. (3.11) are switch func-
tions dependent on the hardening variable, which are designed to turn on or off
the effect of a selected contribution. The functions are specified by the following
formulas:

S1(α) =
− arctan(100[α− αLB])

π
+

1

2
,(3.12)

S2(α) =
arctan(100[α− αLB])

π
+

1

2
,(3.13)

S3(α) =
− arctan(100[α− α1])

π
+

1

2
(3.14)

and are illustrated in Fig. 8. The first switch function S1(α) is used to switch off
the linear softening part after reaching αLB (which we call Lueders strain), the
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αLB α1

Fig. 8. Values of switch functions vs hardening variable.

second S2(α) is used to switch on the saturation hardening part after reaching
αLB and the third function S3(α) is used to switch off the hardening after failure
threshold α1 is reached. The switch functions have a continuum character (i.e.
they are not step functions) for algorithmic reasons. They allow us to avoid
difficulties in automatic differentiation.

The viscoplastic component in Eq. (3.10) follows the consistency concept,
cf. [33], and has the following simple form

(3.15) σV (α̇) = ξα̇,

where ξ is a scalar viscosity parameter. The rate of the hardening variable
α̇ is approximated by using the backward Euler integration scheme, i.e. α̇ =
[αn+1 − αn]/∆t, where αn+1 and αn are the values of the hardening variable
from the current and the previous time steps, respectively, and where ∆t is the
related time increment.

The last contribution to the yield strength is a macroscopic phenomenological
representation of the DSA phenomenon according to McCormick’s concept [35,
36] and is based on the model presented in [37], i.e.

(3.16) σB(α, α̇) = S3(α)σB0(α)

[
1− exp

(
− ta(α, α̇)

t0

)m ]
,

where ta(α, α̇) is the so-called strain aging time which is an additional variable
used to represent the PLC effect. Moreover, the saturation coefficient is assumed
as a linear function of α, i.e.

(3.17) σB0(α) = σB00 + σ′B00α.

In the above equations, σB00, σ′B00, m and t0 are model parameters. The last
parameter is called the DSA characteristic time. The strain ageing time ta evolves
according to the equation

(3.18) ṫa = 1− ta
tw
.
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The waiting time tw(α, α̇) in the above equation is related to the plastic strain
rate in the following way

(3.19) tw =
Ω(α)

α̇
, Ω(α) = Ω0 + Ω′0α,

where Ω0 and Ω′0 are model parameters. Application of the implicit time inte-
gration scheme in Eq. (3.18) with Eq. (3.19) leads to the following formula for
the value of the strain ageing time at the current time step,

(3.20) ta,n+1 =
ta,n + ∆t

1 +
∆α

Ω(αn + ∆α)

,

where ta,n is the value of the strain ageing time at the previous time step. The
DSA part of the yield function is switched off by the function S3(α) when α
reaches the failure threshold α1. Due to this approach, DSA is not simulated in
the post-peak regime, which is consistent with the observed experiments.

As it was mentioned above, the constitutive description presented in this
paper is an extension of the thermo-mechanical model formulated in [43, 44]
and developed in [34] for the simulation of the PLC effect. It is worth empha-
sising which modifications of the previous model are now introduced to match
the experimental sample behaviour. Firstly, the thermo-visco-plastic McCormick
model is combined with the Lueders bands model by adding an initial linear soft-
ening part in Eq. (3.11) and the saturation hardening parameters are appropri-
ately adapted. Secondly, the switch functions are introduced in the description
in order to reproduce Lueders bands at the beginning of the plastic process and
sample failure at the end as well as to prevent extensive serrations in the post
peak regime. The combined model with the arctangent switches is able to repro-
duce the initial Lueders band plateau and the repeated serrations related to the
PLC effect together with the final failure.

3.2. Regularisation

The presented model is susceptible to a loss of material stability due to sev-
eral reasons. Firstly, the Lueders bands observed at the beginning of the plastic
process are related to the initial strain softening. Secondly, unstable behaviour
is observed at a further stage during the tension process in the form of the PLC
effect which manifests itself in the strain rate softening and serrations in the
force–displacement diagram. Thirdly, thermo-mechanical coupling involves ther-
mal softening which is represented by a decrease of the yield strength with the
temperature growth. All destabilising factors are taken into account in the em-
ployed model which can lead to the ill-posedness of the boundary value problem
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and to pathological mesh sensitivity in the numerical simulations, cf. e.g. [50].
To avoid this problem a suitable regularisation should be incorporated.

Among different stabilising factors or methods which can be found in the
literature, the model proposed in this work includes regularisation introduced by
heat conduction [43, 51, 52] and positive rate-dependence in the yield strength
(viscosity) [53–55]. Furthermore, in order to provide additional regularisation
the model is enriched with higher order temperature gradients according to [43],
and σH(α, T ) then becomes

(3.21) σH(α, z) =

[σy0 − S1(α)Hα+ S2(α)S3(α) [σyf − σy0] [1− exp (−δα)]] [1−HT z],

where z is an averaged relative temperature, computed from the following dif-
ferential equation

(3.22) z − l2∇2
Xz = T − T0

with homogeneous natural boundary conditions. Parameter l in the above equa-
tion is called the internal length scale and should influence the width of strain
localisation zone. It is assumed in this model that the averaging is performed in
the reference configuration (cf. [56]), thus the material gradient operator ∇X is
applied in Eq. (3.22). In particular, this last regularisation is designed as a rem-
edy for thermal softening in the presence of large temperature gradients due to
plastic heating. If viscosity and conductivity are treated as material properties,
high loading rates may result in semi-adiabatic conditions so that the gradient
enhancement stabilises, respectively regularises, the softening processes.

3.3. Implementation

To perform numerical simulations for the presented complex model a user
subroutine for the AceGen/FEM finite element environment, see [49], is pro-
grammed. The implemented thermo-visco-plasticity with gradient averaging is
a three field model with the following nodal unknowns: displacement vector,
temperature and non-local variable. The governing equations are the balance of
linear momentum,

(3.23) J div(τ/J) = 0,

the balance of energy,

(3.24) c
∂T

∂t
− J div(−q/J)−R = 0

and the averaging Eq. (3.22), each of the equations with relevant boundary
conditions. In the governing equations div(·) denotes spatial divergence, J =
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det(F) > 0 is the determinant of the deformation gradient, c is heat capacity and
q is the Kirchhoff heat flux density vector. The heat source R includes the heat
generated during plastic dissipation according to the simplified formula, [48],

(3.25) R = χσyα̇,

where χ is the Taylor–Quinney factor assumed to be constant and close to 1.
The constitutive relation for the Kirchhoff heat flux is assumed as the isotro-

pic Fourier’s law in the current configuration

(3.26) q = −k∇xT,

where k is a scalar conductivity.
The weak forms of the governing equations and the implementation of a simi-

lar three-field model in symbolic-numerical software AceGen/FEM are described
in detail in [43]. If the additional gradient-type regularisation is not used, the
problem reduces to two fields, typical for thermo-mechanics. For the subsequent
finite element examples all fields are approximated by linear shape functions and
hexahedral elements. In order to avoid volumetric locking for volume-preserving
plasticity, the F-bar approach presented in [57] is applied.

Moreover, aspects of thermodynamic consistency of the model are discussed
in Appendix A, whereas the local material response predicted by the model
proposed is additionally illustrated in Appendix B.

4. Model verification

In this section experimental data are compared with computational results.
Integral, local and field data (from DIC and thermography) are used. The param-
eters for the aluminum alloy AW5083 are given in Table 2. The basic mechanical
and thermal parameters {ρ,E, ν, k, c, αT } are taken from literature. The finite
element mesh and boundary conditions are shown in Fig. 9. First, the experi-
mental force–displacement diagrams for different strain rates and the simulated
diagrams for the two modelling options, i.e. with (grad) or without (visco) the
gradient-type temperature averaging as introduced in Eqs. (3.21) and (3.22), are
plotted. The temperature evolution at the centre point for different strain rates
and the two models is then compared to the experimental observations. Next, an
analysis of the Lueders bands stage of the response is presented, where selected
images are shown for experiments and computations. Furthermore, a similar
study is performed for serrations occurring during the PLC process. The images
of temperature and engineering strain selected from the entire test in equal in-
tervals are compared. Finally, computational images of the distribution of the
equivalent plastic strain rate α̇ are presented.
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Table 2. Model and process parameters for aluminium alloy AW5083. In last column the
source of data is given (F denotes fitted values).

Property Symbol Value Unit Source
Young modulus E 70 GPa [37]
Poisson ratio ν 0.3 – [37]

Initial yield strength σy0 110 MPa F
Final yield stress σyf 190 MPa F

Saturation constant δ 19.618 – F
Linear hardening modulus H −0.005 E GPa F

Viscosity ξ 40 MPa·s F
Internal length l 5 mm F

Heat conductivity k 121 J/[s·K·m] [58]
Heat capacity c 875 J/[kg·K] [58]

Thermal expansion coeff. αT 23.2 · 10−6 1/K [58]
Thermal softening modulus HT 0.0016 1/K F

Heat dissipation factor χ 0.9 – [59]
Density ρ 2660 kg/m3 [58]

Lueders strain αLB 0.01 – F
Failure threshold α1 0.33 – F

EMC model parameter Ω0 12.36 · 10−4 – F
EMC model parameter Ω′0 7.2 · 10−4 – F
DSA characteristic time t0 0.125 s [37]
EMC model parameter σB00 47.25 · 106 MPa F
EMC model parameter σ′B00 435.3 · 106 MPa F
EMC model exponent m 3−1 – [37]
Enforced displacement ∆L 31.2 mm –
Maximum tension time tMAX 5.2/52/520 s –
Reference temperature T0 20 ◦C –

Fig. 9. Illustration of boundary conditions (left); mesh with 7968 finite elements in total and
two elements in thickness direction (right).
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4.1. Force–displacement diagrams for different loading rates

In Fig. 10 diagrams presenting the sum of reactions versus the sample elon-
gation for the thermo-visco-plastic model with or without gradient enhancement
are presented for tMAX equal to 520, 52 and 5.2 s. Numbers 1–9 in the figures
are the experimental sample numbers (1, 2, 3 – low strain rate, 4, 5, 6 – medium
strain rate, 7, 8, 9 – high strain rate), cf. Table 1. The parameters of the model
marked with F in Table 2 have been fitted manually to experimental data for
the medium strain rate (tMAX equal to 52 s); therefore the best compatibility of
experimental and computed diagrams is seen in Fig. 10, top right.

For all cases brief softening, a short plateau and then saturation hardening are
visible, matching the experimental sample behaviour. There are some differences
in the shear band propagation process depending on the strain rate, which could
be related to the types of PLC effect, but this issue is not examined in the
paper. Serrations are visible in the numerical response, but a further adjustment
is needed regarding their size and starting point especially for the slow and fast
processes. This suggests that a better strain rate and/or temperature dependence
of material model components should be worked out in the future research.

Fig. 10. Sum of reactions vs sample elongation computed for thermo-visco-plastic model and
its gradient-enhanced version for tMAX = 520 s (top left), tMAX = 52 s (top right),

tMAX = 5.2 s (bottom).
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Concerning the regularisation, the diagrams for the thermo-visco-plastic model
and for the model with temperature averaging do not differ significantly during
the pre-peak phase and the serration sizes are also similar.

4.2. Temperature evolution at selected point for different strain rates

In Fig. 11 the relative temperature at the sample central point in the current
configuration is plotted through the whole process, where λ is the elongation
multiplier which takes values from 0 to 1 (1 corresponds to the end of the pro-
cess). For each strain rate, the levels of temperature obtained in experiments
and computations are similar. The discrepancies visible in the experimental di-
agrams for sample numbers 3 and 7 as well as computations for visco-plastic
model for the slow process are caused by the fact that the final localisation band
is close to the monitored centre point. It can be seen in Fig. 7 where the point is
marked by a red dot in the figures of sample numbers 3 and 7. The temperature
in that part of the sample is higher, whereas the rest of the sample already cools
down. At the beginning of the process a slight temperature drop is visible in the
experimental diagrams, most probably caused by the Gough–Joule effect. The
drop is not present in the computational diagram – in order to reproduce this
effect, the model would have to be extended to include thermo-elastic coupling
in the specification of the balance of energy.

Fig. 11. Relative temperature (∆T ) at the centre of the sample for tMAX = 520s (top left),
tMAX = 52s (top right), tMAX = 5.2s (bottom).
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4.3. Field analysis of Lueders bands and PLC effect

In Fig. 12 the evolution of experimentally measured longitudinal engineering
strain is plotted for sample number 5, selected for a comparison of results. The
plots are made in equal intervals, for the following sequence of time moments: 1.1,
1.3, 1.5, 1.7, 1.9, 2.1 s. The time moments are also indicated by green vertical lines
in the force–displacement diagrams presented in Fig. 13. A first Lueders-type
band is formed in the upper part of the sample (Fig. 12, first image from the left)
and evolves together with another band into an (unsymmetric) X-shape pattern.
Moreover, one more band is formed in the lower part of the sample (second
image from the left). Then one of the upper bands and the lower band start to
propagate towards each other (Fig. 12, images 3 and 4 from the left) until they
merge (images 5 and 6). A similar process is captured by computations, noting
that we compare the distributions of total longitudinal strains and not strain
increments (or rates). In Fig. 14 the distribution of longitudinal engineering
strain is shown for loading states corresponding to those presented in Fig. 12.
First, X-shape band patterns are formed in the top and bottom parts of the
sample, see Fig. 14, first image from the left. Then they propagate towards
the sample centre and transform into two zones of localised strain, as shown
in images 2–5 from the left. In image 6 the bands are fully merged, which is
typical for Lueders bands at the hardening stage. It should be mentioned that
in computations we observe X-shape bands due to symmetry of the specimen,
boundary conditions and discretisation. During the experimental process one of
the two bands of the X-shape pattern is dominant due to small imperfections and
hence we can observe an unsymmetrical X-shape band at the beginning of the
process.

Fig. 12. Evolution of longitudinal engineering strain for experimental sample 5 (medium
strain rate) at time moments 1.1, 1.3, 1.5, 1.7, 1.9, 2.1 s from left to right.
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Fig. 13. Sum of reactions vs sample elongation computed for experimental sample 5
(red line) and thermo-visco-plastic model.

1

Fig. 14. Distribution of longitudinal engineering strain at selected time moments for
thermo-visco-plastic model.

In Fig. 15 force–displacement diagram parts are shown for selected serrations
from experiments (left) and computations (right). In the left plot green lines
mark points for which longitudinal engineering strains are plotted in Fig. 16
using DIC data. It is visible that bands propagate from the top of the sample
(see first five images from the left). In the last image a band jumped to another
location close to the centre of the sample.

Turning attention to the modelling, the red points in the right diagram of
Fig. 15 mark the steps, for which distributions of the equivalent plastic strain
rate α̇ are plotted in Fig. 17. This field is used rather than the longitudinal
engineering strain in order to obtain better visibility of band formation and
vanishing. The first image from the left in Fig. 17, associated with the state
between two serrations (at the beginning of local softening branch, see Fig. 15,
right), shows an emerging X-shape band pattern in the upper part of the sample,
with some residual plastic activity below it. Going down towards the lowest point
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Fig. 15. Zoom of part of diagram showing sum of reactions vs sample elongation for
experimental sample 5 (left) and simulation obtained with thermo-visco-plastic model (right).

Fig. 16. Evolution of longitudinal engineering strains for experimental sample 5
(medium strain rate) in time steps numbered from left to right.

1Fig. 17. Distribution of equivalent plastic strain rate α̇ in selected steps
(marked by red points in Fig. 15).
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of the serration, the cross shear band pattern becomes distinct and stabilises as
can be seen in images numbers 3 and 4. It then starts to vanish at the local
force minimum and almost disappears on the local re-hardening branch (images
number 6 and 7). In the last image, associated with the next local peak in the
right diagram of Fig. 15, the shear band pattern becomes distinct again due
to recurring instability. The first and the last images, plotted for the adjacent
peaks, are similar, although a very small translation of the localised plastic strain
pattern upwards can be noticed in the last image. Then the process repeats.
It can be noticed that serration amplitudes are similar for the experiments and
computations, see Fig. 15, but the distances between the peaks are different.

In Figs. 18 and 19 further experimental results are presented. The distribu-
tions of temperature and strain measure (longitudinal engineering strain) are

Fig. 18. Evolution of temperature for experimental sample 5 (medium strain rate)
in equal intervals of 5.2 s.
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respectively shown for the sample number 5 (medium strain rate) in equal inter-
vals of 5.2 s. The images in Fig. 19 are rotated 90 degrees clockwise with respect
to the orientation chosen in Fig. 18 (i.e. the top of the sample is on the right).
It is recalled that the experiments were performed at room temperature (20–21
degrees Celsius). Localised temperature bands can be observed during the whole
process, see images number 4, 6, 7 and 8 in Fig. 18. A V-shape band pattern
can be observed in image number 6, whereas X-shape patterns are not visible.
The shear bands can be inclined upwards or downwards, cf. images number 6
and 8. The band inclination with respect to the transverse x-axis (in Fig. 9 co-
ordinate y refers to the longitudinal axis) for the failure mode is approximately
30 degrees, see also Fig. 7 where the failure mode is shown. During the process
the inclination can be larger, see image number 6 in Fig. 18, where the band
inclination angle is closer to 35 degrees.

The maximum temperature rise in the sample is between 10 and 20 degrees.
Close to final failure the temperature increases significantly in the proximity of
the crack. Shear bands can be also observed in the DIC images of the longitudinal

Fig. 19. Evolution of engineering strain for experimental sample 5 (medium strain rate)
in equal intervals of 5.2 s.
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1
Fig. 20. Evolution of temperature for medium strain rate in equal intervals of 5.2 s

(from left to right).

1
Fig. 21. Evolution of longitudinal engineering strain for medium strain rate in equal

intervals of 5.2 s.

1
Fig. 22. Evolution of α̇ for medium strain rate in equal intervals of 5.2 s.

engineering strain presented in Fig. 19. For an advanced plastic process these
images are similar to the distributions of accumulated plastic strain measure.
The images mostly exhibit single tilted bands but X-shape band patterns can
also be spotted as in images number 8 (in the right part of the sample), 9 and 10.
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The next three figures present the results of simulations performed with the
thermo-visco-plastic model. In Fig. 20 the distribution of relative temperature
(∆T ) is displayed in equal intervals of 5.2 s (the last two pictures are skipped be-
cause image number 8 already shows the predicted failure mode). The sample is
inhomogeneously heated due to plastic dissipation in regions where shear bands
appear. However, due to the high conductivity of aluminium, heat is quickly dis-
tributed and not many bands can be spotted during the process. Only in the third
image from the left an X-shape band pattern is visible (which can also be seen in
Fig. 22). Localisation of temperature is visible in the two images from the right,
at the place where the final band pattern is formed. The temperature increases in
the sample by 16 to 20 degrees, which is not far from the experimental outcome.

In Fig. 21 the distribution of longitudinal engineering strain is displayed in
equal intervals of 5.2 s (again the last two pictures are skipped). Non-homo-
geneous deformation can be observed throughout the simulated process. Shear
bands can be spotted in images number 3, 5, 6, 7 and 8 (from left). The strain
levels are quite similar to the experiments, see Fig. 19. In the images it is not easy
to figure out where a currently active band is located. To resolve this problem,
in Fig. 22 the distribution of the rate of equivalent plastic strain α̇ is displayed.
As in the previous figures the images are plotted in equal intervals of 5.2 s (the
last two pictures are skipped). These images are used to observe where the pro-
cess is active in a current time step. Due to symmetry, moving or appearing and
disappearing X-shape band patterns are visible in the sample rather than the
single tilted bands seen in the experiments. In some time steps more than one
active plastic zone is distinguishable. The inclination of the bands is approxi-
mately 30–35 degrees which is compatible with the experimental findings (the
inclination is measured in the current configuration). In the experimental results
the failure mode is brittle and in computations a V-shape band pattern is visible,
followed by necking, see Fig. 19 (experiments) and 21 (computations). The final
localisation places also differ, for experiments they are in the top part of the
sample and for computations in the bottom part.

5. Conclusions

Propagative instabilities observed in experiments for aluminium alloy
AW5083 have been compared with their numerical simulations. Bone-shape sam-
ples in tension loaded under three strain rates have been tested at room temper-
ature. Equipment which can monitor both the displacement and temperature
fields has been used. Two employed large strain thermo-visco-plastic models
(without and with gradient enhancement), upgraded with special switch func-
tions, can replicate Lueders bands and the PLC effect behaviour in one process.
Integral, local and field data obtained in the experiments and simulations are
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compared, including force–displacement diagrams, temperature at the central
point of the sample model (in current configuration) and images showing the
distributions of the longitudinal engineering strain and temperature. Special at-
tention is paid to the detailed assessment of the two propagating instability
phenomena. Therefore, images of the computed equivalent plastic strain rate are
additionally examined to visualise the evolution of instabilities.

The simulations are able to represent the Lueders-type response at the be-
ginning of the process and the PLC serrations in the hardening phase of the
response. The results show a good agreement between force–displacement dia-
grams (up to the failure mode) and temperature levels observed for the labora-
tory specimens and simulated configurations. Some material model parameters
have been manually tuned to the experimental results for the medium strain
rate, so that the results for this case show the closest agreement. The numerical
model should be improved to obtain a better fit of the results for a broad range
of strain rates. Mesh sensitivity has not been a part of this research since the
models are regularised.

At the beginning of the plastic process, both in the experiments and compu-
tations, two localised strain zones (one in the bottom part, one in the top part
of the sample) representing the Lueders phenomenon can be observed. In the
experiments only one tilted band is observed, but in computations due to sym-
metry (both the boundary conditions and the mesh are symmetric) two X-shape
band patterns appear. Plastic fronts formed at the edges of the bands then move
towards each other due to hardening and finally merge.

The PLC stage of the loading process is too unstable to be reproduced nu-
merically with such accuracy as the Lueders bands, although the recurring shear
bands related to serrations behave in a similar way (move or appear and disap-
pear in a repetitive manner) in the experiments and simulations. The magnitudes
of serrations and the inclinations of the shear bands in experiments and compu-
tations are also comparable.

The main differences are visible in the failure modes. In the experimental
samples failure is brittle along an inclined line and in the computations neck-
ing is observed. The moment when the failure occurs does not seem to be fully
controlled. In experiments it is driven by micro-structure defects and in com-
putations by an additional switch function and numerical imperfections. The
temperature averaging, employed as additional regularisation, seems to have no
significant influence on the presented results due to small temperature gradients.
However, for higher strain rates, when local temperature variation is large due
to semi-adiabatic conditions, it could play a more significant role. Moreover, the
interaction of the location of the failure zone with the location of initial Lued-
ers bands and, respectively or, the PLC effect dominated band locations is of
interest for future research.
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There are a few ways to enhance the computational model. Firstly, to ob-
tain a better fit of computations to experiments a full parameter identification
should be performed. For this purpose, experiments performed on a notched
specimen could be useful both in experiments and numerical modelling by set-
ting the place where the first band is formed. Identification may be extended
by the analysis of strain variations in for instance dog-bone type specimens, i.e.
differences in strain levels within and outside bands, and consideration of differ-
ent strain contributions such as principal strains and shear strains. Secondly, the
model could be augmented by incorporation of thermo-elastic coupling which
represents the Gough–Joule effect, which is visible when the experimental re-
sults are analysed. Thirdly, some further model improvements, for instance the
introduction of McCormick model parameters depending on temperature, should
be examined. This would require experiments to be performed for different tem-
peratures, especially as it is known that the propagative instability phenomena
depend not only on the strain rate, but also on temperature. Finally, different
options of gradient enhancement could be considered to further examine the
issue of regularisation in the context of propagative instabilities.
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Appendices

A. Aspects of thermodynamic consistency

From the first and second law of thermodynamics, the Clausius–Planck in-
equality can be obtained. Following the Coleman–Noll procedure of rational ther-
modynamics, the mechanical dissipation reduces to

(A.1) Dmech = τ : dp + h α̇ ≥ 0

with internal hardening variable α and the associated driving force h = − ∂ψ/∂α.
To prove thermodynamic consistency, the chosen evolution equations for the
plastic part of the symmetric velocity gradient dp and for the hardening variable
are inserted in Eq. (A.1). The evolution of the symmetric part of the plastic
velocity gradient is related to the evolution of the elastic left Cauchy–Green
deformation tensor via

(A.2) − 1

2
Lvbe = γ̇Npbe = sym(lpbe),
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see, e.g., [60]. Assuming an isotropic plastic flow, in addition to the elastically
isotropic response, makes the plastic part of the spatial velocity gradient sym-
metric, i.e. lp = dp, and coaxial with be so that

(A.3) − 1

2
Lvbe = γ̇Npbe = dpbe =⇒ dp = γ̇Np = γ̇

∂Fp
∂τ

with the direction of the plastic flow as defined in Section 3.1. Moreover, the
evolution of the internal hardening variable is assumed as

(A.4) α̇ =

√
2

3
γ̇ ,

cf. Section 3.1. Inserting evolution equations (A.3) and (A.4) into the reduced
dissipation inequality (A.1) yields

(A.5) Dmech = γ̇

[
τ :

∂Fp
∂τ

+

√
2

3
h

]
.

Before showing that this expression for the dissipation satisfies the second law of
thermodynamics, i.e. is always larger or equal to zero, the yield function Fp and
the plastic Helmholtz energy ψp are considered in order to reformulate Eq. (A.5)
and bring it into a more suitable format.

The only contribution of the yield surface Fp which depends on the Kirchhoff
stress τ is the equivalent Huber–Mises–Hencky stress measure f(τ ), see Eq. (3.7),
which is homogeneous of degree one in the Kirchhoff stress, so that

(A.6) τ :
∂Fp
∂τ

= τ :
∂f

∂τ
= f.

The plastic free energy ψp is the only contribution in the free energy function
which depends on the internal hardening variable α and represents the amount
of energy which is stored e.g. in plastic lattice deformations. Although different
definitions could be adopted without influencing the actual material response
from a purely material modelling point of view, a standard expression for linear
and exponential hardening, i.e.

(A.7) ψp =
1

2
Hα2 + [σyf − σy0]

[
α+

1

δ
exp(−δα)

]
,

is chosen here to prove thermodynamic consistency of the model. It is worth
mentioning that this part provides an almost arbitrary adjustment capability, but
choosing an ansatz identical to standard approaches will result in a similar free
energy being stored due to similar hardening processes if compared to standard
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models. From the free energy, the driving force of the internal hardening variable
directly follows as

(A.8) h = −∂ψ
∂α

= −∂ψ
p

∂α
= −

[
Hα+ [σyf − σy0][1− exp(−δα)]

]
.

Concerning the dissipation inequality, it is now possible to use Eqs. (A.6) and
(A.8) in (A.5) to obtain

(A.9) Dmech = γ̇

[
f −

√
2

3

[
Hα+ [σyf − σy0][1− exp(−δα)]

]]
.

There are only two possible states for the model at hand, either the process is
elastic so that the plastic multiplier as well as the mechanical dissipation vanish,
i.e. γ̇ = 0 and Dmech = 0, or the process is inelastic and the current stress state
is restricted to lie on the yield surface. Such an inelastic process results in

(A.10) Fp = f −
√

2

3
[σH + σV + σB] = 0 ⇐⇒ f =

√
2

3
[σH + σV + σB].

Using this relation in the dissipation relation (A.9) leads to

(A.11) Dmech =

√
2

3
γ̇
[
σH + σV + σB −Hα− [σyf − σy0][1− exp(−δα)]

]
.

Inserting the respective contributions introduced in Section 3.1 and two addi-
tional definitions to simplify the presentation, we obtain

Dmech =

√
2

3
γ̇
[[
σy0 + S1(α)Hα+ S2(α)S3(α)

∆σy︷ ︸︸ ︷
[σyf − σy0]

× [1− exp (−δα)]
] ϑ(T )∈[0,1]︷ ︸︸ ︷[

1−HT [T − T0]
]

+ σV + σB −Hα− [σyf − σy0][1− exp(−δα)]
]

(A.12)

=

√
2

3
γ̇
[
ϑ(T )σy0 + ϑ(T )S1(α)Hα+ ϑ(T )S2(α)S3(α)∆σy

× [1− exp (−δα)] + σV + σB −Hα−∆σy[1− exp(−δα)]
](A.13)

=

√
2

3
γ̇
[ ∈[0,1]︷ ︸︸ ︷
ϑ(T )σy0 −Hα

≥0︷ ︸︸ ︷
[1− ϑ(T )S1(α)] + [

∈[0,1]︷ ︸︸ ︷
ϑ(T )S2(α)S3(α)−1]︸ ︷︷ ︸

∈[−1,0]

×∆σy

∈[0,1]︷ ︸︸ ︷
[1− exp (−δα)] + σV︸︷︷︸

≥0

+ σB︸︷︷︸
≥0

]
.

(A.14)
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It can now be seen that the terms associated with linear softening Hα (with
H < 0), viscosity σV and the DSA phenomenon σB are not critical, i.e. these
respective contributions do not violate the second law of thermodynamics. The
only part which could be negative is the one associated with exponential hard-
ening including ∆σy. Hence the model is guaranteed to be thermodynamically
consistent if

(A.15) ϑ(T )σy0 + [ϑ(T )S2(α)S3(α)− 1]∆σy ≥ 0,

assuming the maximum value 1 for the factor [1 − exp(−δα)] of the critical,
negative addend. The minimum value (in α) of the left hand side of this relation
is obtained when either S2 = 0 or S3 = 0, which results in

(A.16) ϑ(T )σy0 −∆σy ≥ 0.

Hence, thermodynamic consistency of the model at hand can be ensured for
a chosen temperature interval if

(A.17) ϑ(T ) = 1−HT [T − T0]︸ ︷︷ ︸
∈[0,1]

≥ ∆σy
σy0

=
σyf − σy0

σy0
=
σyf
σy0
− 1

⇐⇒ 2−HT [T − T0] ≥ σyf
σy0

,

i.e. if the material parameter for thermal softening is chosen in relation to the
initial and saturation hardening limits. More precisely speaking, the saturation
limit may, at the most, be twice as high as the initial yield limit and the maximum
admissible ratio decreases with the increasing temperature range [T − T0] and
with the increasing (positive) thermal softening parameter HT .

It is worth mentioning that the maximum admissible temperature range for
the material parameters chosen in this work (cf. Table 2), is T − T0 = 170.45K.

B. Local material response

In order to show the local homogeneous response the proposed model pre-
dicts, the simulation of a cubic sample discretised with one finite element is
performed. The cube of dimensions L = 5mm, S = 10mm, H = 5mm, see
Fig. 23, is extended by an enforced displacement growing to ∆L = 2.5mm.
Mechanical essential boundary conditions allow for uniform deformation and
thermal insulation is assumed on the whole surface of the cube.

The simulation is performed using the same code and material parameters as
in Section 4. Moreover, the area of the cross section perpendicular to the tension
direction is consistent with the analysed dog-bone sample. In order to obtain
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L

Fig. 23. Homogeneous deformation – geometry and mechanical boundary conditions
(in red).

the medium average strain rate, i.e. 4.3 · 10−3 1/s, the duration of the elongation
process is assumed to be tMAX = 115 s.

The obtained diagrams presenting the sum of reactions F vs sample elonga-
tion d are shown in Fig. 24. The onset of the plastic process is followed by a very
short softening phase (hardly visible in the diagram but confirmed in the numer-
ical output) and a plateau which smoothly transforms into saturation hardening.
In the second half of the elongation process the material undergoes softening.
The application of switch S3(α) incorporating the arctan function prevents the
force F from decreasing to zero in the final part of the simulation.

0.1 0.2 0.3 0.4 0.5
d [mm]0

5

10

15

F [kN]

0.5 1.0 1.5 2.0 2.5
d [mm]

5

10

15

F [kN]

Fig. 24. Sum of reactions vs sample elongation for the initial part of the process (left) and
the entire simulation (right).

The comparison of the force–displacement relation with the diagram of the
Kirchhoff stress measure f(τ ) from Eq. (3.6), see Fig. 25, shows the influence of
geometrical softening on the overall response of the specimen. The stress measure
f(τ ) begins to decrease significantly later than the total reaction force, shortly
after the hardening variable reaches value α1. During the plastic process small
thermal softening is also present due to temperature increase, see Fig. 26.

Taking the results for the homogeneous response into account it should be
emphasised that the force–displacement diagram is smooth and does not repro-
duce serrations characteristic for the PLC effect.
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d

F f

Fig. 25. Sum of reactions (in blue) and stress
measure (in red) vs sample elongation. Green
and orange vertical liness indicate stages when

hardening variable α reaches values αLB

and α1, respectively.

0.5 1.0 1.5 2.0 2.5
d [mm]

10

20

30

40
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Fig. 26. Temperature increase vs sample
elongation.
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