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The paper presents two methods of solving the problem of the dynamics of
a frame structure with viscoelastic bonds in nodes. In the first approach, known from
the literature, two-node beam elements with three degrees of freedom in each node
were used. Exact shape functions were adopted to obtain a stiffness matrix, a con-
sistent mass matrix and a damping matrix for the beam element. These matrices
were then modified by introducing rotational viscoelastic constraints at the bound-
ary nodes. In the second approach, a new method of modelling viscoelastic bonds in
frame structures was proposed. It consists in removing rigid bonds between elements
along selected degrees of freedom and replacing them with a new, additional element
with viscoelastic properties. This approach allows the use of any rheological model
to describe viscoelastic bonds (i.e. an additional element) without the need to create
a new modified finite element. In this work, an advanced rheological model, i.e. the
fractional Kelvin model, was used to describe rotational viscoelastic bonds. The use
of fractional derivatives to describe the damping properties reduces the number of
parameters needed in the model, but leads to a non-linear eigenproblem. In order to
solve the eigenvalue problem, the continuation method was used, and the dynamic
characteristics of the structure were determined on the basis of the calculated eigen-
values. Selected structures with viscoelastic nodes were analyzed and the obtained
results confirm the effectiveness of the proposed approach.
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1. Introduction

In engineering practice, the problem of semi-rigid connections is
well recognized. Commercially available frame design programs usually have the
feature to define purely pinned, fully rigid or semi-rigid connections with a lim-
ited elasticity. The elasticity of connections in frame structures has a significant
impact on the static and dynamic response of the entire structure, therefore, this
issue is the subject of many studies.
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In the past, several studies have been conducted on analytical solutions for
steel beams and frames with semi-rigid connections. However, many of these
studies focused on the economic advantage of semi-rigid joints over perfectly
rigid connections [1, 2].

In some papers, it is proposed to perform calculations for the static analysis
of steel frames with semi-rigid connections using the rotational stiffness function
of the connection [3, 4]. In order to take into account the influence of connections
on the behavior of steel frames in [5] a mechanical model of node was developed
based on the analogy to three springs and a non-deformable element. For such
a model, the stiffness matrix and the nodal load vector of the beam element
under bending were derived.

In the research on semi-rigid joints, much attention has been paid to the
modeling of the moment-rotation relationship for various types of connections,
also in recent years. In [6], connections of steel girders with the use of a shear tab
welded to the supporting element and the beam web were analyzed. The authors
proposed a method to predict the stiffness of such joints. In [7], the model of
welded steel connection is presented as a 4-node finite element with 12 degrees
of freedom. In [8] a model of a bolted connection of a beam with a column was
examined with geometrical, material and contact nonlinearities. The obtained
results were validated by the experimental results.

Much attention has been also paid to the issues of flexibility of connection
and critical load of frames. In [5], it was shown that the flexibility of the joints
has a significant impact on the elastic buckling load.

Simões [9] and Truong et al. [10] concern the methods of optimal design of
steel structures with semi-rigid joints. In [11], an analytical model was presented
showing the interaction of the axial force and the bending moment and it was
verified using experimental data. In [12] the experimental results supported by
the finite element method analyses were used to develop a connection failure
mechanism.

Steel frames with semi-rigid connections are also extensively studied in terms
of time-varying loads. In [13], a bolt connection of a steel beam with a col-
umn with an end-plate subjected to cyclic loading is analyzed. In [14], a three-
dimensional macromodel of the connection under cyclic loading conditions is
presented. A nonlinear time-history analysis of three-dimensional frames is pre-
sented in [15], in which geometrical nonlinearity is taken into account.

An extended nonlinear dynamic analysis of slender frames with semi-rigid
connections is explored in [16], where equilibrium paths are obtained by contin-
uation techniques and using the Newton–Raphson method. The results of both
theoretical and experimental research on the dynamics of portal steel frames can
be found in [17–22]. In [23] experimental tests were presented, which aimed to
determine the response of the structure to seismic loads.
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Bayat and Zahrai [24] present an analysis of steel frames with rigid and
semi-rigid connections. Five earthquake records were selected as the load. In [25]
a model of rotational cyclic behavior of the base plate was presented using the
component method.

In [26], a model of the connection in ABAQUS program was created,
which was subjected to cyclic loads. The geometrical and material nonlinea-
rities were taken into account. Geometrical nonlinearities in the analysis of
three-dimensional semi-rigid frames subjected to dynamic loads are presented
in [27]. Extensive overview of structures with semi-rigid connections can be
found in [28].

Ozel et al. [29] present a method of estimating dynamic characteristics in
a steel frame, which takes into account the presence of semi-rigid connections
and the influence of accurate modeling of shear deformations. The study provides
solutions obtained in the ANSYS program.

The use of a viscoelastic material in the connection may have a beneficial ef-
fect on the reduction of vibrations in structures loaded with dynamic forces [30].
There are various ways of incorporating viscoelastic material into a node. In re-
inforced concrete structures, polymeric materials are used as pads in supports. In
this work, the studies are devoted to connections where the viscoelastic material
affects the rotation of the cross-section at the node, where the hinge transfers
axial and shear forces, and the viscoelastic material constrains the rotation. Con-
nections of this type occur in steel structures, examples of such nodes are studied
in [31] and [32].

The equation of motion describing the dynamic behavior of a viscoelastic
material can be related to a mechanical model built of properly connected dash-
pots and springs. In the literature, there are classical models (e.g. the Kelvin or
Maxwell model) and the so-called fractional models, including an element de-
scribed by non-integer derivatives, which has both viscous and elastic properties
(e.g. the Scott–Blair element). The use of fractional derivatives instead of inte-
ger derivatives to model the rheological properties of viscoelastic materials has
been presented in [33, 34]. Fractional models are popular because, with a small
number of parameters, they can accurately describe the dynamic behaviour of
the viscoelastic material for different temperatures and different frequencies. The
analysis of steel frames with semi-rigid viscoelastic connections, both in the fre-
quency and time domain, is presented in [35]. Parametric studies of response
spectra for recorded and artificial earth motions for viscoelastic bonds described
by the Generalized Maxwell model and the equivalent Kelvin–Voigt model were
carried out. Complex modal analyzes aimed at determining the dynamic charac-
teristics of the frame and examining the effect of the stiffness of the connection
and the rotary damper on natural frequencies and modal damping coefficients
are also presented in [31, 36].
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Papers in which theoretical research is confirmed by experimental results are
rather rare. In the work [37], the natural frequencies of the L-type steel frame
and the portal frame with rotational springs symbolizing semi-rigid connections
were numerically analyzed and compared with the experimental results. The
dynamic characteristics of structures with viscoelastic elements are determined
in [38], where the equations of motion are presented in the frequency domain, and
then a properly defined eigenproblem is solved using the continuation method.
The continuation method is used to solve a nonlinear eigenproblem in systems
with viscoelastic elements [38–41], as well as to solve nonlinear equations of
amplitudes [42].

This article presents the derivation of the stiffness matrix, the consistent mass
matrix and the damping matrix for a beam element with rotational viscoelastic
constraints. The Euler Bernoulli beam model under small displacements was
adopted for the analyses. The linearly elastic material was adopted along the
length of the element and in semi-rigid connections. The modified finite element
and derived matrices were used for the modal analysis of frame structures using
the ordinary FEM method. Shear deformations have not been considered in the
beam element. Taking them into account in the energy balance is possible and
would lead to the development of appropriate matrices for the Timoshenko beam.
Such a problem was discussed in [43], where shear deformations were also taken
into account in order to determine the damping of the system.

An alternative way of taking into account the viscoelastic connections in
frame structures is also presented in the article. It consists of treating the vis-
coelastic element as an additional constraint connecting the appropriate degrees
of freedom. In this approach, a fractional rheological model was used to describe
the viscoelastic bond, which resulted in the nonlinear eigenproblem. In order to
solve the eigenproblem, the continuation method was chosen, the procedure of
which is also briefly described. Finally, several computational examples demon-
strating the effectiveness of the proposed method are presented, and the paper
is summarized with concluding remarks.

2. Finite element with viscoelastic bonds

In the first approach to the static and dynamic analysis of a frame struc-
ture with viscoelastic nodes, the classical finite element method (FEM) was
used, which required the determination of an appropriate finite element. For
this purpose, stiffness, mass and damping matrices were derived for a finite
element containing viscoelastic constraints. Moreover, in the following consider-
ations, it was assumed that elastic constraints and viscous constraints occur in
both nodes of a finite element, but only in relation to the rotational degrees of
freedom.
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2.1. Stiffness matrix

In a six-degree-of-freedom beam finite element that has length L and bend-
ing stiffness EI, the values of the rotational stiffness at the support nodes are
defined as k0 and kl, respectively. Moreover, it was assumed that the damp-
ing coefficients, denoted as c0 and cl, are defined in relation to the rotational
constraints in the nodes. The connection of the beam element with supports
by means of rotational elastic and viscous constraints is shown symbolically in
Fig. 1. It has been assumed that the sections denoted as e0 and el are infinitely
stiff and infinitely short, so the lengths L and l are equal.

Fig. 1. Beam finite element with viscoelastic rotational bonds.

Figure 1 shows nodal displacements of the beam element (marked with aster-
isks) and displacements in the supports. The nodal translational displacements
of the beam element are the same as the displacements of the supports, i.e.:

q1 = q∗1, q2 = q∗2, q4 = q∗4, q5 = q∗5,

while the rotations of the supports differ from the nodal rotations of the beam
due to the rotational flexibility of the connections:

(2.1) q3 = q∗3 + q3s, q6 = q∗6 + q6s.

Rotation angles in elastic constraints can be determined by the relationships:

(2.2) q3s =
Q∗3
k0
, q6s =

Q∗6
kl
.

Using Eqs. (2.1) and (2.2), the stiffness matrix of a beam element with rota-
tional flexibility can be determined in the following form:
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(2.3) K̃ =



k1 0 0 −k1 0 0

0 k11 k12 0 k13 k14

0 k21 k22 0 k23 k24

−k1 0 0 k1 0 0

0 k31 k32 0 k33 k34

0 k41 k42 0 k43 k44


,

where:

k11 =
12EI

l3Ω
(1 + µ0 + µl), k12 = k21 =

6EI

l2Ω
(1 + 2µl),

k14 = k41 =
6EI

l2Ω
(1 + 2µ0), k22 =

4EI

lΩ
(1 + 3µl),

k23 = k32 = −6EI

l2Ω
(1 + 2µl), k24 = k42 =

2EI

lΩ
,

k33 =
12EI

l3Ω
(1 + µ0 + µl), k13 = k31 = −12EI

l2Ω
(1 + µ0 + µl),(2.4)

k34 = k43 = −6EI

l2Ω
(1 + 2µ0), k44 =

4EI

lΩ
(1 + 3µ0),

µ0 =
EI

k0l
, µl =

EI

kll
,

k1 =
EA

l
, Ω = (1 + 4µ0 + 4µl + 12µ0µl).

2.2. Mass matrix

Assuming a constant mass density ρ along the element, a consistent mass
matrix M̃e for a finite element with given viscoelastic rotational bonds at nodes
can be presented as a sum of two matrices [37]:

(2.5) M̃e = M̃k + M̃m.

The basic M̃k matrix that contains classical components related to elastic
constraints:

(2.6) M̃k =

ρl

420



140
0 4Z1(v1, v2) Symmetry
0 2lZ2(v1, v2) 4l2Z5(v1, v2)
70 0 0 140
0 2Z3(v1, v2) lZ4(v2, v1) 0 4Z1(v2, v1)
0 −lZ4(v1, v2) −l2Z6(v1, v2) 0 −2lZ2(v2, v1) 4l2Z5(v2, v1)





Modal analysis of frame structures. . . 343

is increased by the matrix M̃m containing components related to viscous bonds:

(2.7) M̃m =

2l

EI



0

0 2(M11+M12+M22)
l2

Symmetry

0 2M11+M12
l 2M11

0 0 0 0

0 −2(M11+M12+M22)
l2

−2M11+M12
l 0 2(M11+M12+M22)

l2

0 M12+2M22
l M12 0 −M12+2M22

l 2M22


,

where:

Z1(vp, vq) =
1

(4−vpvq)2
(560+224vp−196vq−328vpvq

+32v2p+32v2q+50vpv
2
q−55v2pvq+32v2pv

2
q ),

Z2(vp, vq) =
vp

(4−vpvq)2
(224+64vp−160vq−86vpvq+32v2q+25vpv

2
q ),

Z3(vp, vq) =
1

(4−vpvq)2
(560−28vp−28vq−184vpvq

−64v2p−64v2q+5vpv
2
q+5v2pvq+41v2pv

2
q ),

Z4(vp, vq) =
vq

(4−vpvq)2
(392−100vp−128vq−38vpvq−64v2p+55v2pvq),

Z5(vp, vq) =
v2p

(4−vpvq)2
(32−31vq+8v2q ),(2.8)

Z6(vp, vq) =
vpvq

(4−vpvq)2
(124−64vp−64vq+31vpvq),

M11 =
1

3(4−v1v2)3
[8c1c2v1(1−v1)2(1−v2)2

−4c21(1−v1)3(4−v2)−c22v21(1−v2)3(4−v1)],

M12 =
4

3(4−v1v2)3
[c1c2(4+v1v2)(1−v1)2(1−v2)2

−c21(1−v1)3(4−v2)v2−c22(1−v2)3(4−v1)v1],

M22 =
1

3(4−v1v2)3
[8c1c2v2(1−v1)2(1−v2)2

−4c22(1−v2)3(4−v1)−c21v22(1−v1)3(4−v2)],

ν1 =
k0l

3EI+k0l
, ν2 =

kll

3EI+kll
.
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2.3. Damping matrix

The damping matrix for a beam element with a given value of the rotational
damping coefficients at nodes was derived in the following form [37]:

(2.9) C̃e = 2



0

0 2(C11+C12+C22)
l2

Symmetry

0 2C11+C12
l 2C11

0 0 0 0

0 −2(C11+C12+C22)
l2

−2C11+C12
l 0 2(C11+C12+C22)

l2

0 C12+2C22
l C12 0 −C12+2C22

l 2C22


,

where:

(2.10)

C11 =
1

(4− v1v2)2
[4c1(1− v1)2 + c2v

2
1(1− v2)2],

C12 =
4

(4− v1v2)2
[c1v2(1− v1)2 + c2v1(1− v2)2],

C22 =
1

(4− v1v2)2
[4c2(1− v2)2 + c1v

2
2(1− v1)2].

The rotational damping coefficients specified at the nodes of the finite element
do not affect the axial degrees of freedom, therefore the corresponding row and
columns in matrix (2.9) have zero values.

3. Frame structure with viscoelastic connections

In this section the derivation of the global equation of motion for a structure
with viscoelastic connections is presented.

It is assumed that the considered element is attached to the structure with
a hinge, and the viscoelastic connection is an additional constraint between the
appropriate degrees of freedom, i.e. the rotations of the cross-sections at the
node (see Fig. 2b). Then, the viscoelastic constraints are treated as additional
two-node elements (Fig. 3b), which are inserted between the rotational degrees
of freedom of the structure.

The equation of motion of a frame structure with viscoelastic connections can
be written in the well-known matrix form, and the presence of these connections
can be considered as an additional force vector f(t):

(3.1) Mq̈(t) + Cq̇(t) + Kq(t) = p(t) + f(t).

The symbols M, C and K denote respectively: mass, damping and stiffness
matrices determined for the structure without elastic or viscous bonds, q(t) is
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the displacement vector, p(t) is the excitation force vector, and f(t) is the vector
of forces generated in viscoelastic bonds, which are treated as an additional
load. Graphically, additional constraints are represented as viscoelastic rotary
connectors (VRC) that are associated with the appropriate degrees of freedom
of the structure. The method of introducing rotational bonds in an exemplary
node of a frame structure is shown in Fig. 2. The vector of additional forces for
the entire structure is the sum of vectors fr(t), i.e. vectors of forces caused by
the VRC elements:

(3.2) f(t) =
m∑
r=1

fr(t),

where m is the total number of VRCs.

Fig. 2. Viscoelastic connection treated as an additional constraint between rotational
degrees of freedom.

Applying the Laplace transformation with zero initial conditions, the equa-
tion of motion (3.1) could be written as follows:

(3.3) (s2M + sC + K)q̄(s) = p̄(s) + f̄(s),

where

(3.4) f̄(s) =
m∑
r=1

f̄r(s)

and s is the Laplace variable, q̄(s) is the Laplace transform of q(t) and p̄(s) is
the Laplace transform of p(t).

If only one VRC element (e.g. number r) is mounted on the structure in such
a way that the ends of the element coincide with the i-th and j-th degree of
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freedom of the structure, respectively (Fig. 3b), then the Laplace transform of
the forces vector can be written in the following form:

(3.5) f̄r(s) = −(Kr +Gr(s))Lrq̄(s),

where Lr is the (n × n) global location matrix of the element. The location
matrix for the selected VRC element is built using the allocation vector er (r-th
element). If the element r is mounted on a structure between degrees of freedom
number i and j, then the location matrix is given by Lr = ere

T
r , where er =

col(0, . . . , ei = 1, . . . , ej = −1, . . . , 0).

Fig. 3. Additional forces acting in the structure node and in the viscoelastic rotary
connector (VRC).

The total vector of the Laplace transforms of the interaction forces that act
between the VRC elements and the structure can be written as:

(3.6) f̄(s) = −
m∑
r=1

(Kr +Gr(s))Lrq̄(s).

The final form of the equation of motion for the structure with VRCs, written
in the frequency domain, is:

(3.7) (s2M + sC + Gd(s) + K + Kd)q̄(s) = 0,

where Kd =
∑m

r=1KrLr, Gd(s) =
∑m

r=1Gr(s)Lr and p̄(s) = 0, Kr and Gr(s)
are functions describing the elastic and viscous properties of the adopted rheolog-
ical model of the connection. Equation (3.7) constitutes the nonlinear eigenvalue
problem. Dynamic characteristics of the structure, such as natural frequencies ωi
and non-dimensional damping ratios γi can be determined on the basis of ob-
tained eigenvalues si:

(3.8) ω2
i = µ2i + η2i , γi = −µi/ωi,

where µi = Re (si), ηi = Im (si).
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In the case of classical rheological models, it is possible to linearize the eigen-
problem, whereas in the case of fractional models, one of the methods of solving
the nonlinear eigenproblem should be used, e.g. the continuation method.

3.1. Classical rheological model of rotational constraints

The force generated by the viscoelastic rotational constraint (Fig. 3) can be
expressed as the sum of the elastic force and the damping force:

(3.9) fr(t) = kr∆q(t) + cr∆q̇(t),

where:
∆q(t) = qj − qi, q̇k(t) =

d

dt
qk.

Equation (3.9) describes the rheological model, known as the classical Kelvin
model with the given parameters of elasticity kr and viscosity cr. In this case,
the functions in formula (3.6) are: Kr = kr and Gr (s) = scr.

3.2. Fractional rheological model of rotational constraints

If the element related to viscosity in the Kelvin model (Fig. 3) is replaced by
a viscoelastic element, i.e. the so-called Scott–Blair element, the fractional rheo-
logical model will be obtained. The Scott–Blair element, whose graphic symbol
is a rhombus (Fig. 4), is described by two parameters: the constant cr and the
number α, which is a non-integer number (0 < α ≤ 1) that determines the order
of the derivative with respect to time.

Fig. 4. The Scott–Blair element symbolizing the fractional rheological model.

The constitutive equation for the above-mentioned Scott–Blair element can
be written in the following form:

(3.10) fs(t) = crD
α
t ∆q(t)

where the symbol Dα
t (·) denotes the fractional-derivative of the order α with

respect to the time t. In this work we adopt the Riemann–Liouville definition of
fractional derivatives [33, 34].

If the fractional Kelvin model is used to describe a viscoelastic connection,
the functions in formula (3.6) are: Kr = kr and Gr(s) = s∝cr.
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4. Nonlinear eigenproblem – the continuation method

The continuation method described in [38] and briefly presented in this Sec-
tion was used to solve the nonlinear eigenproblem. According to this method,
the parameter κ is introduced into the equation to be solved, i.e. the equation
of motion (3.7). After neglecting the internal damping of the structure (C = 0),
Eq. (3.7) can be rewritten as follows:

(4.1) h1(s,q) = D(s)q(s) = 0,

where
D(s) = s2M + κGd(s) + K + Kd.

Equation (4.1) has n+ 1 unknowns, therefore it is necessary to add one more
equation. Following the work [33], it was proposed that the additional equation
was a way to normalize the eigenvector q:

(4.2) h2(s,q) = qT(s)
∂D(s)

∂s
q(s)− a = 0,

where a is a given value (see Eq. (4.6)) and

(4.3)
∂D(s)

∂s
= 2sM+κ

∂Gd(s)

∂s
.

Parameter κ increases incrementally from 0 to 1, and for the increment l it
can be written as

(4.4) κl = κl−1 + ∆κ,

where ∆κ is the assumed increment, e.g. ∆κ = 0.1.
The initial step of iteration is determined after substituting κ = 0, which

transforms the nonlinear eigenproblem (4.1) into a linear eigenproblem:

(4.5) (s20M + K + Kd)q0(s) = 0.

The solutions of Eq. (4.5) are the real eigenvalues s0 and the corresponding
real eigenvectors q0. The constant a can be calculated as:

(4.6) a = s0q
T
0 Mq0.

The values s0 and q0 are taken as the starting point of the iterations to find
complex eigenvalues and eigenvectors, which are the solutions of the eigenprob-
lem (4.1). Then, in each increment of κ, successive approximations of the solution
are carried out by determining the increments of eigenvalues and eigenvectors
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using the Newton method. For the iteration step t, the incremental equations of
the Newton method written based on the system of Eqs. (4.1) and (4.2) are as
follows:

(4.7)

∂h1

∂q

∣∣∣∣ s=s(t)l

q=q
(t)
l

δq +
∂h1

∂s

∣∣∣∣ s=s(t)l

q=q
(t)
l

δs = −h1(s
(t)
l ,q

(t)
l ),

∂h2
∂q

∣∣∣∣ s=s(t)l

q=q
(t)
l

δq +
∂h2
∂s

∣∣∣∣ s=s(t)l

q=q
(t)
l

δs = −h2(s(t)l ,q
(t)
l ),

where:

∂h1

∂q
= s2M + κlGd(s) + K + Kd,

∂h1

∂s
=

(
2sM + κl

∂Gd(s)

∂s

)
q,

∂h2
∂q

= qT
(

2sM + κl
∂Gd(s)

∂s

)
,

∂h2
∂s

= qT
(

2M + κl
∂2Gd(s)

∂s2

)
q.

The new approximation of eigenvalues and eigenvectors for the iterative step t
is calculated as:

(4.8)
s
(t)
l = s

(t−1)
l + δs,

q
(t)
l = q

(t−1)
l + δq.

The iterative process is completed when the following conditions are satisfied:

(4.9)
|s(t)l − s

(t−1)
l | ≤ ε1|s(t)l |,

‖qtl − qt−1l ‖ ≤ ε2‖q
t
l‖,

where ε1 andε2 are sufficiently small numbers, the assumed accuracies of calcu-
lations.

The final solution is obtained for κ = 1. The above-described procedure of the
continuation method should be applied sequentially for each searched eigenvalue.

The flowchart of the continuation method is shown in Fig. 5.

5. Numerical examples

In order to validate the proposed procedures, numerical calculations were
performed for a few selected structures. The solutions obtained using a modified
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Fig. 5. The flowchart of the continuation method.

finite element with viscoelastic bonds were compared with the solutions obtained
for structures in which the viscoelastic joints were treated as additional bonds
between the elements.

5.1. Beam with viscoelastic bonds at the supports

A single-span beam made of I-section IPE 300 was analyzed (Fig. 6). Young’s
modulus E = 205GPa and beam spans L = 10m were assumed. The considered
structure was supported at both ends by hinges and additionally by rotational
viscoelastic bonds. The proposed approach makes it possible to investigate the
influence of the rotational flexibility of the supports on the dynamic response of
the structure. The values of the rotational flexibility coefficients were determined
in relation to the bending stiffness of the beam, i.e. ki =∝1 EI, where ∝1 is the
coefficient varying in a certain range, and I is the cross-section moment of inertia.
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Fig. 6. Beam with rotational viscoelastic bonds.

Figure 6 shows the diagrams of changes in the first natural frequency ω1 of
the considered beam, as a functions of the rotational flexibility coefficients k0
and kl.

Fig. 7. The first natural frequency ω1 versus the rotational flexibility coefficients.

When the rotational flexibility coefficient approaches zero, the support may
be treated as a hinge, and when the value of this coefficient is several orders
greater than the beam bending stiffness, the support is treated as a fixed. Based
on the results presented in Fig. 7, it can be concluded that the dynamic parame-
ters of the structure are almost constant when the rotational flexibility coefficient
exceeds the bending stiffness of the beam several times.

In the next test, the dynamic response of the structure was determined.
The amplitude of the vertical displacement d (Fig. 6) caused by the vertical
dynamic force P (t) = P0 cosλt, where P0 = 1.0MN was calculated for the
increasing excitation frequency λ. Figure 8 presents the results, i.e. resonance
curves for selected values of damping coefficients c0 and cl. The values of the
rotational damping coefficients were adopted in relation to the bending stiffness
of the analyzed beam, i.e. ci =∝2 EI, where ∝2 takes one of the selected values:
0, 0.001, 0.005 or 0.01 [s ·Nm/rad]. On the other hand, the values of the stiffness
coefficients were the same in all dynamic tests, i.e. k0 = kl = 0.2EI.
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In Fig. 8, the green dashed line shows solutions for α2 = 0, which correspond
to the case when there is no damping in the system (ci = 0). In this case,
the displacement amplitudes at resonance frequencies tend to infinity (vertical
asymptotes).

Fig. 8. The resonance curves for different values of the damping coefficient c0 and cl.

The successive curves refer to the solutions for the next selected values of
damping coefficients (ci =∝2 EI). The black solid line shows the solution for
the highest assumed value of the damping coefficients ci. As a result of dynamic
analysis, it can be concluded that the increasing value of the damping coefficient
does not change the resonant frequency, but significantly reduces the dynamic
response of the structure.

5.2. L-type frame with semi-rigid connection

In this example, a structure composed of two elements is analyzed, the so-
called L-type frame with a semi-rigid internal joint (Fig. 9). Data describing
the structure and some results of dynamic analyzes were taken from [44]. The
following data were adopted for the calculations: Young’s modulus E = 200GPa,
bending stiffness EI = 41.48 Nm2, mass distribution ρ = 11.08 Ns2/m2 and
rotational flexibility k = 137.3Nm/rad [44].

Table 1 shows the results of the modal analysis, the natural frequency values
obtained assuming a rigid connection in the middle node and those obtained
assuming that this connection is flexible.
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Fig. 9. L-type frame model with semi-rigid connection.

Table 1. Natural frequency values for different types of internal connection.

Types of connection Mode Silva et. al. [44]
ωi [rad/s]

Present work
ωi [rad/s]

Rigid
1 15.81 15.82
2 34.74 34.85

Flexible
1 14.90 14.91
2 32.72 32.87

Table 2 lists the natural frequencies ω [rad/s] obtained with various discretiza-
tions of the structure, both for the rigid connection and for the flexible connection
in the internal node. In each case both the column and the beam were divided
into the same number of finite elements.

Table 2. Natural frequencies ωi [rad/s] for different discretizations, for rigid and for flexible
connection.

Type
of connection

Mode
Number of finite elements in a member

1 element 2 elements 4 elements 10 elements 100 elements

Rigid
1 24.47 16.01 15.84 15.82 15.82
2 4519.15 35.62 34.91 34.86 34.85

Flexible
1 32.52 15.13 14.92 14.91 14.91
2 4698.38 33.32 32.90 32.87 32.87

The results from Table 2 can be summarized that the proposed approach
leads to accurate results with relatively coarse discretization, even when dividing
a structural member into four finite elements.
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5.3. L-type frame with viscoelastic connection

In the second example concerning the L-type frame (Fig. 10), the connec-
tion in the inner node was described by the rotational stiffness coefficient k =
120Nm/rad, and also by the damping coefficient c = 0.25 Nm·s/rad. A structure
made of a beam and a column with the same bending stiffness EI = 75.7Nm2

and mass distribution ρ = 72.01 kg/m was adopted for the analysis.
First, dynamic analyzes were performed, assuming that only rotational elas-

ticity k was set in the internal node (c = 0). This made it possible to compare
the obtained results with the results reported in [37]. Table 3 lists four natural
frequencies determined by different methods for the frame with a rigid connec-
tion and for the frame with a semi-rigid connection. It is worth noting, that
the results given in [37] were obtained by computational methods as well as
experimentally.

Table 3. Natural frequencies ωi [rad/s] determined by various methods, including
experimental ones.

Mode

Rigid connection Semi rigid connection
Kawashima
et al. [37]
Calculated

Present
method

Kawashima
et al. [37]
Calculated

Kawashima
et al. [37]

Experimental

Present
method

1 23.3 23.32 21.6 21.0 20.84
2 51.4 51.36 47.8 46.0 46.26
3 74.5 73.97 67.2 65.0 65.05
4 142.8 135.55 142.9 138.0 134.15

In the next analysis, the dynamic response of the structure, the so-called res-
onance curves, were determined for selected values of the damping coefficient c.
Figure 10 shows the calculation results, i.e. the amplitude of the cross-section
rotation at the load point (point B in Fig. 10) caused by the dynamic moment
M(t) = M0 cosλt, where M0 = 1.0MNm, for the increasing value of the excita-
tion frequency λ.

In Fig. 11, the red dashed line shows the solutions obtained when the damp-
ing in the internal node was neglected (c = 0). In this case, the displacement
amplitudes at resonant frequencies tend to infinity, also for the first natural
frequency ωi = 20.84 rad/s.

The solid black line shows solutions for the highest assumed damping value
c = 0.033EI = 2.5 Nm s/rad. In all the cases, the elasticity of the joint was the
same k = 1.585EI = 120 Nm/rad.

The effectiveness of damping occurring in the internal node is particularly
noticeable in the resonance zones. The relatively small value of the damping
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Fig. 10. L-type frame structure with a rotational viscoelastic connection.

Fig. 11. Resonance curves (rotation of the cross-section at point B) for selected damping
coefficients c.

coefficient c significantly reduces the dynamic response of the structure, even
when the retardation time is very short: c/k = 0.0208 s.

5.4. Portal frame with internal viscoelastic nodes

A portal frame made of HEA 300 steel profile was also analyzed. Rotational
viscoelastic bonds were assumed in the corners of the frame, in the beam-to-
column connections (Fig. 12).
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Fig. 12. Model of a portal frame with two viscoelastic internal nodes.

The fractional Kelvin model defined by the parameters c, k and α was
adopted for the rheological description of rotational viscoelastic bonds. In the
first stage of the calculations, the fundamental natural frequencies of the frame
with rigid nodes were compared with the solutions for the frame with flexi-
ble nodes. Table 4 compares six natural frequencies determined by two differ-
ent methods described in previous chapters, i.e. using a modified finite element
and by introducing additional viscoelastic bonds in the structure. For a semi-
rigid connection, the stiffness coefficient k = 0.2EI = 7 669 kNm/rad was as-
sumed.

Table 4. Natural vibrations frequencies ωi [rad/s] determined by different methods.

Mode

Rigid connection Semi rigid connection

Modified
finite element

Addition of
viscoelastic

bonds

Modified
finite element

Addition of
viscoelastic

bonds
1 67.800 67.798 54.120 54.120
2 159.34 159.34 121.86 121.86
3 413.96 413.96 410.75 410.75
4 488.55 488.53 422.96 422.96
5 622.15 622.11 469.77 469.77
6 975.17 975.15 898.25 898.20

The results in Table 4 obtained by both methods mentioned above are al-
most identical. In this case, the relative differences in values do not exceed one
hundredth of a percent.

In the subsequent analyses, the influence of the damping coefficients c on the
solution was investigated. Modal characteristics of the structure (ωi, γi) were de-
termined for selected values of coefficients c and α. Table 5 and Fig. 13 show the
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change of the natural frequency for the increasing value of the damping coeffi-
cient c. The value of c was determined in relation to the rotational elasticity k,
which was constant for all the analyzed cases, i.e. k = 0.2EI.

Table 5. Natural vibrations frequencies ωi [rad/s] for the increasing value of the damping
coefficient c.

Mode c = 0.0 c = 0.001 k c = 0.003 k c = 0.006 k c = 0.01 k

1 54.120 54.125 54.172 54.328 54.697
2 121.856 121.915 122.395 124.032 127.971
3 410.752 411.100 412.495 413.432 413.754
4 422.961 423.567 428.328 442.477 462.163
5 469.771 470.997 482.780 526.758 580.189

Figure 13 shows the obtained results, i.e. the change in natural frequency:
ω̃i determined using a modified finite element (lines on the diagram) and ωi
obtained by the second method, i.e. by introducing additional viscoelastic bonds
into the structure (point markers on the diagram).

Fig. 13. Natural vibrations frequencies ωi and ω̃i [rad/s] for the increasing value of the
damping coefficient c.
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The increasing value of the damping coefficient in the considered example
causes significant changes only for higher natural frequencies of the structure
(Fig. 13).

In the following analyses, rotational constraints at the corners of the frame are
described by a fractional Kelvin model, which is determined by three parameters:
k, c and α. Such an analysis is only possible using the second method, where
viscoelasticity is introduced into the structure as additional rotational bonds at
the nodes. In the analysis, it was assumed that the parameters k and c were
constant (k = 0.2EI, c = 0.01 k), and only the parameter α varied from 0.6
to 1.0. It is worth noting that when the parameter α reaches one (α = 1), the
fractional Kelvin model turns into the classical Kelvin model. The obtained
values of the natural frequencies ωi presented in Table 6 show little sensitivity
to the change of the parameter α in the considered range. However, the change
in the value of the non-dimensional damping ratio γi is significant (Table 7).
It can be concluded that in the considered frame the non-dimensional damping
ratio of the second mode is the parameter most sensitive to the variation of the
parameter α (Fig. 14).

Table 6. Natural vibrations frequencies ωi [rad/s] for the increasing value
of the parameter α.

Mode α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 54.4841 54.5620 54.6306 54.6775 54.6970
2 123.3001 123.8072 124.4776 125.5462 127.9714
3 411.3816 411.7963 412.4599 413.2281 413.7543
4 426.6232 428.7702 432.7380 441.7993 462.1632

Table 7. Non-dimensional damping ratios γi [–] for the increasing value of the parameter α.

Mode α = 0.6 α = 0.7 α = 0.8 α = 0.9 α = 1.0

1 0.0086 0.0140 0.0222 0.0346 0.0537
2 0.0147 0.0256 0.0435 0.0726 0.1204
3 0.0014 0.0022 0.0029 0.0028 0.0020
4 0.0103 0.0198 0.0361 0.0602 0.0776

In general, increasing the α parameter leads to an improvement in the damp-
ing properties in the viscoelastic nodes and an improvement in the damping
properties of the entire structure.
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Fig. 14. Non-dimensional damping ratios γi [-] versus the value of the parameter α.

6. Conclusions

The subject of the research was the dynamic analysis of frame structures
in which viscoelastic connections in the form of rotational bonds occur in the
nodes. In addition to the traditional finite element approach, which required the
development of an appropriate finite element, a second approach was proposed,
in which additional rotational constraints were introduced into the system. The
development of a finite element that takes into account viscoelastic bonds, even
for a simple rheological model for these bonds, leads to complex formulas for
the coefficients of mass and stiffness matrices. On the other hand, the second
approach, which consists in adding viscoelastic bonds in a frame structure, allows
an easy application of any rheological model for these bonds. In this work, the
fractional Kelvin model was used to describe rotational viscoelastic bonds, which
is characterized by only three parameters, but its constitutive equation contains
fractional order derivatives. The use of fractional derivatives to describe the
damping properties led to a non-linear eigenproblem, which was solved by the
continuation method.

On the basis of the obtained results, the dynamic characteristics of the en-
tire structure, i.e. natural frequencies and non-dimensional damping ratios, were
determined. These values were used to assess the impact of semi-rigid and vis-
coelastic connections on the dynamic response of the considered system.
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By analyzing the selected frame structures, it was shown that the rotational
elasticity of the joint has a large impact on the dynamic characteristics of the
structure under consideration. It can be proved that when the rotational elas-
ticity of the support is several times greater than the bending stiffness of the
beam, the support can be treated as fully fixed. The proposed approach allows
to obtain relatively accurate results with coarse discretization. Almost the same
solutions were obtained when dividing each member into several finite elements
and for a very fine division.

When examining the impact of the node damping parameter on the dynamic
behavior of the structure, it was found that the increasing value of the damping
coefficient does not change the resonant frequency, but it can significantly reduce
the dynamic response of the structure for each mode of vibration. On the other
hand, the influence of the parameter α describing the fractional model of the
viscoelastic bond on the non-dimensional damping ratio of entire structure is
monotonic, but the relationship is non-linear. In the considered frame, the vis-
coelastic rotational bonds in the nodes had the greatest impact on the damping
of the second mode of vibration.

The results of calculations of selected structures with viscoelastic nodes con-
firm the effectiveness of the proposed approach.
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