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waves in phononic crystal rods of chiral materials

P. DAI, R. WANG

Tianjin University, Tianjin 300054, China, e-mail: daipengshuai666@163.com

The chiral properties of chiral materials have a great influence on the wave
propagation. Applying chiral materials to the design of phononic crystal rods not
only increases the design space, but also may have other potential advantages. There
is a lack of research on designing phononic crystal rods using chiral materials and the
propagation characteristics of elastic waves in phononic crystal rods made of chiral
materials. In this study, chiral materials are introduced into the design of phonon crys-
tal rods for the first time, Bragg scattering type and local resonance type phononic
crystal rods are designed using chiral materials. Dispersion equations for the propa-
gation of longitudinal-torsion coupled waves in the phononic crystal rods are derived,
and the effect of the chirality of the materials on their bandgap range is studied. The
study shows that: in Bragg scattering type phonon crystal rods, material chirality
can greatly affect the bandgap, among them, the chiral direction has the greatest
effect, and in order to obtain a low-frequency wide bandgap, the chiral coefficients
of the materials should be increased as much as possible with the chiral directions of
the two cells being opposite; in the local resonance type phonon crystal rod, only two
types of oscillators are added to the material simultaneously to produce a band gap,
and the starting frequency obtained is much lower than that of the Bragg scattering
type.
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1. Introduction

Rod structures are widely used in everyday life, along with engineer-
ing applications such as aerospace, ship building, and civil engineering. Vibra-
tions are inevitable in engineering structures, which necessitates research into
the dynamics and vibration reduction design of beam and rod structures [1, 2].
The band gap properties of phonon crystals provide novel ideas for vibration
isolation and noise reduction in engineering structures [3].

The generation of bandgap in phononic crystals is mainly based on two mech-
anisms: one is that Bragg scattering occurs between neighboring lattices during
wave propagation and leads to the continuous dispersion of energy, and the re-
sulting bandgap is called the Bragg bandgap [4]; the other is that the energy of
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the wave is absorbed by the local resonance cells or structures in the phononic
crystals in the process of wave propagation to the extent that it cannot propa-
gate forward, and the resulting bandgap is called the local resonance bandgap [5].
Among them, the bandgap range of the former has a strong relationship with
the lattice size of the crystal, and generally can only suppress waves with wave-
lengths smaller than or equal to its lattice size, and it is not easy to generate
a bandgap at low frequencies [4]; the bandgap range of the local resonance-type
phononic crystals is dependent on the intrinsic frequency of the resonance cell,
which is free from the control of the lattice size within the bandgap range, and
is conducive to the realization of the low-frequency bandgap, but the bandgap
range of this type of phononic crystal is generally narrower. Therefore, realizing
both low frequency and wide bandgap by using a small and simple structure has
been one of the hot issues in the field of phononic crystals.

Studies have shown that phononic crystal beams, rods, plates, and other
structures can also generate bandgap [6–8]. In engineering, phonon crystals can
be used to make custom structures for controlling elastic waves. Li et al. [9]
demonstrated variable-section phononic crystal beams; Jiang et al. [10] and
Wang et al. [11] worked with folded piezoelectric phononic crystal beams and
phononic crystal tracks with good vibration isolation effects. The microstructural
characteristic lengths of the materials used in these structures are considerably
smaller than the elastic wave wavelengths, presented in contemporary studies;
thus, the effect of microstructure can be neglected [12].

In recent years, with the development of micro- and nano-phonon crystals,
materials with microstructural features of length comparable to their wave-
lengths have gradually attracted attention. Researchers are focusing on studying
the propagation properties of elastic waves in them and using them to make
phonon crystals and phonon crystal structures. When the wavelength of elas-
tic waves is comparable to the characteristic length of the microstructure, the
microstructure of the material considerably influences the elastic waves [13–16].
Therefore, the band gap properties of such phononic crystals can be modulated
by tuning their microstructure parameters to provide more design space for de-
signing phononic crystals and phononic crystal structures [12]. Miao et al. [17]
used micropolar materials to reverse the design of phononic crystal beams, which
can modulate the size effect to modulate the band gap of phononic crystals, con-
siderably improving their design range. Similar to micropolar materials, chiral
materials have chiral microstructures [18]. When the characteristic size is com-
parable to the material wavelength, the chiral characteristics of chiral materials
also considerably affect wave propagation [19].

Chirality is a geometric property, which an object cannot coincide with its
mirror image after operations such as translation and rotation. Because of these
unique geometric properties, chiral structures have coupled deformation prop-
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erties such as stretch-twist and bend-twist [20], as a result, when elastic waves
propagate in chiral materials, the motion of particles takes the form of coupled
motion of macroscopic advection and microscopic micro-rotation. These coupled
motions affect the scattering and dispersion behavior of elastic waves as they
propagate [19, 21–23], enhancing the control of elastic waves by chiral materials.
Lakhtakia [23] demonstrated that chiral parameters can affect the scattering
and dispersion of elastic waves, and the total reflection of elastic waves can
be achieved by appropriately adjusting the chiral parameters of chiral materials.
Yang et al. [21] showed that reducible reflected plane waves can be excited using
chiral materials, which can be used as anechoic coatings. Several contemporary
studies on chiral structures have shown that because of their unique geometry,
large in-plane deformability, porosity, and other characteristics, chiral structures
have advantages such as excellent local wave capability and strong energy dissi-
pation ability [24, 25]. Theoretically, chiral materials also have these advantages
because of their chiral microstructures. Therefore, designing phononic crystal
rods using chiral materials can increase the space of designs and may have other
potential advantages. Contemporary research lacks information regarding the
design of phononic crystal rods using chiral materials as well as the propagation
characteristics of elastic waves in phononic crystal rods made of chiral materials.

In this study, we introduced chiral materials into the design of phononic
crystal rods for the first time and two types of phonon crystal rods are designed
using chiral materials. One is a phonon crystal rod comprising different chiral
materials, that is, the Bragg scattering type phonon crystal rod, and the other
is a local resonance type phonon crystal rod equipped with oscillators. Then,
the wave equations for longitudinal torsional coupling propagation and their
dispersion relations are derived, and the effect of material chirality on their
bandgap ranges is studied.

2. Mechanical model

A slender rod of a phonon crystal comprising chiral material is examined
in this study (Fig. 1). The phonon crystal unit comprised two cells, each of
which is a slender rod cell with a circular cross-section, and each cell comprised
a transversely isotropic chiral material with chirality only in the axial direction
and isotropic in the other directions. The lengths of the two cells are a1 and a2,

Fig. 1. Schematic diagram of phonon crystal rod of chiral material.
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and the cell-to-cell contact is perfect, which satisfied the condition of a continu-
ous interface. The propagation characteristics of the longitudinal-torsion coupled
waves along the axis direction are studied.

Fig. 2. Chiral material slender rod force diagram.

First, the constitutive relation for the tensile-torsion of a chiral slender rod
is derived. For a chiral material slender rod, as shown in Fig. 2 F is the axial
force of the rod, M is the torque of the rod u is axial displacement, φ is axial
torsion.

According to [2], the strain energy of the chiral slender rod is calculated using

(2.1) U =

L∫
0

1

2
Aε2 +

1

2
Cκ2 +Bεκdz,

where ε, κ, L, A, C, B and z are the axial strain, axial torque, rod length, tensile
stiffness, torsional stiffness, coupling stiffness, and axial coordinate, respectively.

The virtual work done by the axial force F and the torque M is calculated
using

(2.2) δW = Fδu +Mδφ.

From the geometric relationship and the definition of strain, we obtain

(2.3) δu = εL, δφ = κL, ε =
∂u

∂z
, κ =

∂φ

∂z
.

According to the variation of strain energy and the functional reciprocity theorem
we obtain

(2.4) δW − δU = 0.

Then, the constitutive relation of the chiral slender rod can be obtained by

(2.5) F = A
∂u

∂z
+B

∂φ

∂z
, M = C

∂φ

∂z
+B

∂u

∂z
.

The relationship between A, B, and C is given using

(2.6) B = ±
√
chAC,
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where ch is the chiral coefficient; ch represents the degree of stretch-torsion cou-
pling. A larger chiral coefficient implies stretch-induced larger torsion. The chiral
direction can be positive and negative when B is positive and negative, respec-
tively, indicating the difference in the direction of stretch-induced torsion [26].

3. Problem solving

The wave equation (3.1) is obtained by replacing the axial force and torque
in the constitutive equation (2.5) with the inertial force and moment of inertia,

(3.1)
A
∂2u

∂z2
+B

∂2φ

∂z2
= ρAp

∂2u

∂t2
,

C
∂2φ

∂z2
+B

∂2u

∂z2
= ρJp

∂2φ

∂t2
,

where Ap, Jp, and ρ are the area of the cross-section, moment of inertia of the
cross-section, material density and t is the time.

The general solution of displacement and torsion is expressed using:

(3.2)
u = A1e

ik1z−iωt +A2e
ik2z−iωt +B1e

ik1z−iωt +B2e
ik2z−iωt,

φ = Q1A1e
ik1z−iωt +Q2A2e

ik2z−iωt +Q3B1e
ik1z−iωt +Q4B2e

ik2z−iωt.

The solution procedure is presented in Appendix Q1–Q4 and k1–k4 can be found
in Appendix, A1, A2, B1, and B2 are arbitrary constants, and ω is the angular
frequency.

By presenting Eq. (3.2) in matrix form, we can obtain

(3.3)
[
u
φ

]
=

[
D1 D2 D3 D4

D5 D6 D7 D8

]
G,

where G = [A1 A2 B1 B2] are arbitrary constant matrix, D1–D8 are the elements
before the coefficients of the general solution of Eq. (3.1).

By combining Eqs. (2.5) and (3.3), we can obtain

(3.4)
[
F
M

]
=

[
D9 D10 D11 D12

D13 D14 D15 D16

]
G,

where D9–D16 are the elements obtained by inserting Eq. (3.2) in Eq. (2.5).
Appendix presents the method for obtaining the values of D1–D16.

After obtaining Eqs. (3.3) and (3.4), z = 0 is used to obtain the displacement,
torsions, axial forces, and torque on the left side of a cell; these are represented
in matrix form to obtain

(3.5)
[
uL φL FL ML

]T
= DLG,
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where elements DL are the value of D in Eqs. (3.2) and (3.3) at z = 0 and the
superscript “L” denotes the left side.

z = a1 is used to obtain the displacement, torsion, axial force, and torque on
the right side of this cell and represented in matrix form to obtain

(3.6)
[
uR φR FR MR

]T
= DRG.

The elements DR are the value of D in Eqs. (3.2) and (3.3) at z = a1, and the
superscript “R” denotes the right side.

When Eqs. (3.4) and (3.5) are combined and the same part is eliminated, the
transfer matrix of this cell can be obtained, which is

(3.7) T1 = DR(DL)−1.

Similarly, the transfer matrix of the other cell is obtained as T2. The two
cells are in perfect contact; therefore, the transfer matrix of the whole unit is
obtained by multiplying the two transfer matrices as

(3.8) T = T1T2.

The dispersion equation (3.8) is obtained according to the Bloch boundary con-
dition [29],

(3.9) det(T − eikaI) = 0,

where a = a1 + a2, k is the number, and I is the unit matrix.
Next, the locally resonant phonon crystal rod is discussed. First, torsionally

moving ring oscillators are added. As shown in Fig. 3, ring oscillators are added
to the right side of each cell, and each oscillator comprised a torque spring with
a negligible mass and a circular mass block.

Fig. 3. Schematic diagram of phonon crystal rod with added torsion oscillators.

The torsion ϕn of the nth cell annular oscillator is assumed to be given using

(3.10) ϕn = V neiωt,
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where ϕn is the torsion of the nth cell annular oscillator, V n is the amplification,
and ω is the angular frequency.

Then, by analyzing the force on the oscillator, the equation of motion of the
oscillator is obtained as

(3.11) Ip
∂2ϕn

∂t2
= MP ,

where

(3.12) MP = Kh(ϕn − φR),

as the torque transmitted on the torque spring, and φR,Kh, IP are torsion on the
right side of the nth cell, equivalent stiffness of the torque spring, and moment
of inertia of the oscillator mass, respectively.

Equations (3.9)–(3.11) are used to express ϕn by φR for

(3.13) ϕn = φR
(

Kh

Kh + IPω2

)
.

Then, the moment on the right side of the cell is

(3.14) MRN = MR +MP .

MR in Eq. (3.5) is replaced withMRN , and the elements in DR are changed and
inserted in Eq. (3.6). Then, the transfer matrix T 1

1 with the torsional oscillator
is obtained and the dispersion relation is given using

(3.15) det(T 1
1 − eika1) = 0.

Next, resonant phonon crystal rods with longitudinally moving oscillators are
added, as shown in Fig. 4, to the right side of each cell. Each oscillator comprised
a spring of negligible mass and a mass block.

Fig. 4. Schematic diagram of phonon crystal rod with added longitudinal oscillators.
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Using the similar process of obtaining Eq. (3.14) and replacing ϕn and φR

with the displacements of the longitudinal oscillators and the displacement on
the right side of the nth cell, the force FRN on the right side of the cell with
the addition of the longitudinal oscillator can be obtained. Then, the dispersion
relation can be obtained by using a method similar to that described above for
adding a torsional oscillator. Only here FR is replaced by FRN . If FR ·MR are
replaced then the dispersion relation can be obtained with both oscillators added.

4. Numerical results and discussion

4.1. Result comparison

When the chiral coefficient in this study is approximately zero, longitudinal
and torsional waves can be approximately decoupled and the band structure of
torsional and longitudinal waves can be degraded from Eq. (3.8). The degrada-
tion result should be the same as the band structure of the longitudinal and
torsional waves of the phonon crystal rod with the same material parameters. In
order to verify the correctness of this work, the band structure of the longitu-
dinal wave is degenerated and compared with that of the phononic crystal rod
made of Frazier elastic material using the parameters from Frazier’s paper [28],
and the results are shown in Fig. 5. From Fig. 5, it can be seen that our degen-
erate results are in general agreement with those in the literature, proving, the
correctness of our method.

Fig. 5. Comparison chart of the results.

Then, the propagation of longitudinal-torsion coupled waves in phonon crys-
tal rods is numerically studied and discussed. Most biological materials, such as
wood and bone, are chiral materials. For example, cartilage tissue, has elastic and
shear moduli of 0.1–1GPa and 0.01–0.1GPa, respectively [29]. In this section,
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the moduli of elasticity and shear are set to 0.2GPa and 0.01GPa, respectively.
The modulus of elasticity multiplied by the area is the tensile stiffness, A, and
the shear modulus multiplied by the extreme moment of inertia is the torsional
stiffness C. The cross-sectional radius of the slender rod and density ρ are set
to 0.05m and 1012 kg/m3, respectively. The length a is 2m, and the lengths of
two cells a1 and a2 are 1m each.

4.2. Bragg scattering type phonon crystal rod

4.2.1. The same chiral direction of cell. The performance parameters of material
chirality of chiral material rod cell are the chiral coefficient magnitude and the
chiral direction Next, from these two aspects, the influence of material chiral-
ity is investigated. According to the dispersion equation (3.9), the energy band
structure of the phononic crystal rods is obtained. The chiral direction of both
cells is considered to be positive, i.e., B takes both positive values. The chiral
coefficient of ch is considered between 0 and 1. Therefore, the chiral coefficients
of the two cells are ch = 0.1 and ch = 0.5, respectively, as shown in Fig. 6(a),
where the pink part represents the band gap. Thereafter, the chiral coefficient
of one cell is set to ch = 0.1, and the chiral coefficient of the other cell gradually
increases to obtain the curve of the first band gap range with different chiral
coefficient differences, as shown in Fig. 6(b). The starting frequency is the fre-
quency at which the bandgap begins, the lower edge of the bandgap in Fig. 6(a),
the cut-off frequency is the frequency at which the bandgap ends the upper edge
of the bandgap in Fig. 6(a), and the difference between the cut-off frequency and
the starting frequency is the width of the bandgap.

(a) (b)

Fig. 6. Energy band structures of two cells with different chiral coefficients and the effect of
different chiral coefficients on the first band gap: (a) energy band structure and (b) change

of band gap with different chiral coefficient differences ∆ch.



552 P. Dai, R. Wang

As shown in Fig. 6, the different material chiral coefficient of the two cells
can open the band gap of the phonon crystal rods. Thus, the chirality of the
material can influence the propagation of elastic waves of the phonon crystal
structures. As the differences in the chiral coefficient increased, the first band
gap range gradually increased, and the starting frequency and cutoff frequency
both decreased. The increase in the chiral coefficient difference can make the
difference in the material properties of the two cells larger, making the band gap
wider which is easy to understand.

The decrease of the starting frequency and cutoff frequency may be caused
by the increase of the chiral coefficient. In order to prove this point. Controlling
the difference of the chiral coefficient constant, taken as ∆ch = 0.1, the curve of
the variation of the first band gap with a smaller chiral cell is made, as shown
in Fig. 7(a). Controlling the difference of the chiral coefficient constant, taken as
∆ch = 0.15, the curve of the variation of the first band gap with a small chiral
cell is made, as shown in Fig. 7(b).
(a) (b)

Fig. 7. Effect of chiral coefficients on band gap range when the difference in chiral
coefficients is constant: (a) ∆ch = 0.1 and (b) ∆ch = 0.15.

From Fig. 7, it can be seen that the starting and cut-off frequencies of the
first band gap decrease with the increase of the chiral coefficient at a constant
difference of the chiral coefficients of the two cells, and the band gap width
decreases slightly but not significantly. This can indicate that the chirality of
the material is favorable for the phonon crystal rod to open the band gap at
low frequencies, and the chiral coefficient of the material should be increased as
much as possible if we want to achieve the control of low frequency waves.

4.2.2. Opposite direction of cell chirality. The chiral direction of one cell is as-
sumed to be positive and the other is considered negative. That is, one cell of
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B is positive, and for the other cell, B is negative. First, for the two cells, chi-
ral coefficients are set to ch = 0.5 for obtaining the energy band structures, as
shown in Fig. 8(a), where the pink part represents the band gap. Then, the chiral
coefficients of the two cells gradually increase to obtain curves of the first band
gap range with the different chiral coefficients, as shown in Fig. 8(b).

(a) (b)

Fig. 8. Energy band structure of two cells with opposite chiral directions and the effect of
chiral coefficients on the first band gap: (a) energy band structure and (b) variation of band

gap with chiral coefficients ch.

As shown in Fig. 8, the different chiral directions of the two cells can also
open the band gap of the phonon crystal rod, and the band gap range is wider
and the starting frequency is lower than that in Fig. 6. The chiral direction of
the material represents the direction of twisting produced when the chiral rod
is stretched. The opposite chiral direction produces the opposite torsion when
the chiral rod vibrates in the longitudinal direction. Obviously, in this case, the
difference in material properties between the cells is greater, so that a wider
band gap is produced. Also, similar to above, an increase in the material chiral
coefficient still resulted in lower starting and cutoff frequencies. The aim behind
designing the phononic crystal rod is to obtain a wide band gap at low frequen-
cies. Considering opposite chiral directions for the two cells is more favorable for
achieving this goal.

4.3. Local resonant phonon crystal rods

According to some literature [3] the equivalent stiffness of the selectable
spring is that the stiffness of the torque spring Kh is 4 kN, and the stiffness
of the spring Kt is 100 kN/m. The oscillator is selected as a denser lead with
a density of 11 600 kg/m3. The diameters of the inner and outer ring oscilla-
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tors are set to 0.14m and 0.16m, respectively; thus, the rotational inertia Ip of
the oscillator is obtained. The longitudinal oscillator is taken as a square with
a length of 0.1m, and it is used to obtain its mass mP .

The tensile and torsional stiffnesses of the chiral material are the same as
above, with a cell length of 1 m and a chiral coefficient of ch = 0.5. The energy
band structure without oscillator, with only torsional oscillator, with only lon-
gitudinal motion oscillator, and with both oscillators is shown in Fig. 9(a)–(d),
respectively.

(a) (b)

(c) (d)

Fig. 9. Energy band structure of resonant phonon crystal: (a) without oscillator, (b) with
torsional oscillator, (c) with longitudinal vibrational oscillator, and (d) with both oscillators.

As shown in Fig. 9, the band gap is not generated by the phononic crystal
rod when no oscillators are added or in case of only one type of oscillator; the
band gap is opened only when two types of oscillators are added. The starting fre-
quency of this band gap is much lower than that of the Bragg scattering phononic
crystal rod, which is consistent with the conclusion that resonant phononic crys-
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tals are more likely to produce a low-frequency band gap. Moreover, as shown
in Fig. 9(b) and (c), simply adding one type of oscillator cannot produce a band
gap, but the addition of one type of oscillator can affect the energy band struc-
ture, and different combinations of oscillators have different effects on the energy
band structures.

5. Conclusion

In this study, chiral materials are introduced into the design of phonon crys-
tal rods for the first time, the Bragg scattering type and local resonance type
phononic crystal rods are designed using chiral materials, and the propagation
characteristics of longitudinaltorsional coupled waves in them are studied. In
Bragg scattering type phonon crystal rods, the band gap is generated because of
the differences in chiral coefficients and chiral directions, with the chiral direc-
tion having a greater effect. An increase in the chiral coefficient of the material
can decrease the starting and cutoff frequencies of the phonon crystal rods. And
the widest band gap range can be obtained when the material chirality is in the
opposite direction. Therefore, in order to obtain a low-frequency wide bandgap,
the chiral coefficient of the material should be increased as much as possible with
the chiral directions of the two cells being opposite. In the local resonance type
phonon crystal rod, adding only one type of oscillator affected the energy band
structure but did not produce a band gap. Only two types of oscillators are added
to the material simultaneously to produce a band gap, and the starting frequency
obtained is much lower than that of the Bragg scattering type. These findings
will provide the theoretical basis for the design of phononic crystal structures
and vibration isolation structures.

Appendix

The solution of the wave equation (3.1) is shown here. First, the solution of
displacement and torsion is given using [31]

(A.1)
u = U ′eikz−iωt,

φ = Ωeikz−iωt,

where U ′ and Ω are the amplitudes of longitudinal and torsional waves, respec-
tively.

It is inserted back into the wave equation (3.1), we can obtain

(A.2)
[
−k2A+ ρApω

2 −k2B
−k2B −k2C + ρJpω

2

] [
U
Ω

]
= 0.
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Equation (A.3) is obtained according to the condition that the system of
equations has a solution

(A.3) det

([
−k2A+ ρApω

2 −k2B
−k2B −k2C + ρJpω

2

])
= 0.

The amplitude ratio of torsion and displacement is given using:

(A.4) Q =
Ω

U ′
=
−k2A+ ρApω

2

k2B
.

The four solutions of k are obtained using Eq. (A.3), and the relationship
between the four solutions is given using:

(A.5) k1 = −k2, k3 = −k4.

The general solution of displacement and torsion is expressed using:

(A.6)
u = A1e

ik1z−iωt +A2e
ik2z−iωt +B1e

ik1z−iωt +B2e
ik2z−iωt,

φ = Q1A1e
ik1z−iωt +Q2A2e

ik2z−iωt +Q3B1e
ik1z−iωt +Q4B2e

ik2z−iωt,

whereQ1–Q4 represent the amplitude ratio obtained by inserting the correspond-
ing k, and A1, A2, B1, and B2 are arbitrary constants.

The solutions of the axial force and torque are obtained by considering the
instanton equation (2.5). This is organized in matrix form as:

[
u
φ

]
=

[
D1 D2 D3 D4

D5 D6 D7 D8

]
A1

A2

B1

B2

 ,(A.7)

[
F
M

]
=

[
D9 D10 D11 D12

D13 D14 D15 D16

]
A1

A2

B1

B2

 ,(A.8)

whereD1–D8 denote the elements corresponding to the coefficients preceding the
general solution, and D9–D16 are the elements obtained by inserting Eq. (3.3)
in Eq. (2.5).
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