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This paper is devoted to an asymmetrical sandwich beam with a functionally
graded core with three different variants of boundary conditions. An analytical model
of this beam, considering individual nonlinear shear deformation theory, is developed.
Based on Hamilton’s principle, two differential equations of motion for this beam are
obtained. These equations are solved analytically, and as a consequence, the critical
forces and basic natural frequencies for each beam support variant are determined.
Detailed calculations are carried out for selected exemplary beam structures, and
their results are compared with numerical FEM analysis.
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1. Introduction

Composite structures, whose development and application began in
the last century, are currently the subject of intensive research. This is due to
their superior performance-to-mass ratio compared to conventional materials.
These structures can be tailored to meet very different requirements depending
on their application by introducing spatially varying mechanical properties or
selecting a specific number of layers and their characteristics. Such a design
process can be especially beneficial in highly demanding industries, where the
mechanical performance of structures is of utmost importance.

Mahi et al. [1] proposed a novel hyperbolic shear deformation theory con-
sidering five degrees of freedom that is applicable to the bending and free vibra-
tion analysis of isotropic, functionally graded sandwich and laminated compos-
ite plates. Th e theory implies parabolic transverse shear deformation across the
thickness direction. Nguyen et al. [2] introduced a new higher-order shear defor-
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mation theory that allows solving the problems of buckling and free vibration of
both isotropic and functionally graded sandwich beams. This approach was based
on the hyperbolic distribution of transverse shear stress. Chen et al. [3] investi-
gated the free and forced vibration characteristics of functionally graded porous
breams with nonuniform porosity distribution. This property was assumed to
impact the elastic moduli and the mass density. The authors considered both
symmetric and asymmetric porosity distributions.

Filippi and Carrera [4] developed one-dimensional layer-wise theories
based on higher-order zig-zag theory. The aim of their study was to formu-
late an approach with reduced computational cost while maintening a satis-
factory accuracy level. Goncalves et al. [5] proposed a framework for linear
buckling and free vibration analyses using a microstructure-dependent Timo-
shenko beam model. The problem was solved using a numerical finite element
method approach by formulating an accurate, yet approximate, stiffness matrix.
Kitipornchai et al. [6] devoted their work to the problem of free vibration
and elastic buckling of nanocomposite-layered porous beams reinforced with
graphene platelets. The solution was achieved by referring to the Timoshenko
beam theory and the Ritz method. Magnucka-Blandzi et al. [7] focused on
the vibrations and stability of an untypical orthotropic layered beam, whose faces
consisted of three layers. The modelling of the problem was based on Hamilton’s
principle, which allowed the derivation of the equations of motion.

Mohammadimehr and Shahedi [8] investigated higher-order buckling and
free vibration analyses of sandwich beams characterised by aluminium alloy or
polyvinyl chloride-form core and carbon nanotube-reinforced faces. The gener-
alised differential quadrature method was used, while the core was studied using
higher-order sandwich panel theory and the faces were considered within the
framework of modified couple stress theory. Żur [9] presented research on ana-
lytical and numerical analyses of free axisymmetric and non-axisymmetric vibra-
tions of functionally graded annular plates regarding classical plate theory. The
author used quasi-Green’s functions to solve the problem studied with different
boundary conditions. Żur [10] also aimed to solve the problem of free vibrations
of functionally graded circular plates elastically supported on a concentric ring
using classical plate theory.

Magnucki et al. [11] referred to the Zhuravsky shear stress formula to de-
velop a shear deformation theory for simply supported beams with bi-symmetri-
cal cross sections under generalised load. Xie et al. [12] devoted their work to the
analysis of nonlinear free vibration of functionally graded beams using various
theories of shear deformation. The von Kármán geometric nonlinearity was in-
cluded in the investigated problem, while the Ritz method and Lagrange equation
were considered to achieve the solution. Lei et al. [13] focused on the dynamic
behaviour of single and multi-span functionally graded porous beams with elastic
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boundary conditions. Hamilton’s principle within the framework of Timoshenko
beam theory was applied and solved based on the singular convolution element
method.

Le et al. [14] formulated a third-order shear deformation beam element for
free vibration and buckling analysis of bidirectional functionally graded sand-
wich beams. It is derived using hierarchical functions to enrich the Lagrange and
Hermite interpolations of a conventional beam element. Magnucka-Blandzi
et al. [15] studied the bending and buckling problems of a simply supported
circular plate. The assumed generalised form of symmetrically varying mechan-
ical properties enables the study of both single-layer and three-layer structures
within a consistent mathematical formulation that includes the shear effect.
Hung et al. [16] investigated thermally induced free vibrations of sandwich
beams with a functionally graded porous core and isotropic faces. The authors re-
ferred to third-order and quasi-3D beam theories within the framework of a mesh-
free approach based on the point interpolation technique.

Magnucki et al. [17] analysed the buckling and free vibration problems of
simply supported sandwich beams. Three models of the structures were taken
into consideration, while two nonlinear individual shear theories of deforma-
tion were proposed. Magnucki et al. [18] presented bending problem of gen-
eralised circular sandwich plate with consideration of the individual nonlin-
ear shear deformation theory. Wang et al. [19] combined the absolute nodal
coordinate formulation with zig-zag theory to achieve an efficient numerical
approach to solve the problems of static deformation and free vibrations of
sandwich beams. Goliwąs et al. [20] devoted their work to elastic buckling
of the sandwich beam with three different supports. Using the principle of sta-
tionary total potential energy, two nonlinear differential equations of equilib-
rium were obtained and analytically solved, including the exemplary equilibrium
paths. Magnucki and Magnucka-Blandzi [21] studied the static behaviour
of a sandwich beam with an asymmetric structure and a functionally graded
and homogeneous core under a uniformly distributed load. The individual non-
linear shear deformation function was analytically developed, taking into ac-
count the classical shear stress formula to calculate displacements, strains, and
stresses.

Following the provided references, numerous aspects of composite structures
require further studies, especially in terms of unified formulations allowing for the
evaluation of their mechanical behaviour. Many researchers provide approximate
but accurate solutions achieved within the framework of numerical methods. On
the contrary, an analytical approach that provides a closed-form solution can be
considered more useful because the relationship between the varying mechanical
properties of composites and their performance is evident and does not require
parametric studies.
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(a) simply supported – B-1
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Fig. 1. Schemes of the asymmetric sandwich beam with three different types of supports.

The subject of the paper is an asymmetric sandwich beam with a functionally
graded core of length L, with three different types of supports under the action
of an axial compressive force Fo along the neutral axis (Fig. 1).

The cross section of this beam is a rectangle with width b and total depth h.
Furthermore, the thicknesses of successive layers are as follows: hf1 – the upper
face, hc – the core, hf2 – the lower face (Fig. 2). The studied beam constitutes
a combination of sandwich structure and functionally graded structure. The faces
are considered to be homogeneous, whereas the mechanical properties of the core
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Fig. 2. Scheme of the cross section of this beam with an asymmetric structure.
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vary in the thickness direction. It is assumed that the mechanical properties are
continuous; thus, the Young’s modulus of the core is consistent with that of the
faces at their junction.

The main purpose of this work is to analytically study the buckling and free
flexural vibration problems of the asymmetric sandwich beam with functionally
graded core. This work is a continuation of previous research on the bending
behavior of the asymmetric sandwich beam presented in [21].

2. Analytical model of the asymmetric sandwich beam

The variation of Young’s modulus in successive layers of this beam is as
follows:
• the upper face (−χf1 − χc/2 + η0 ≤ η ≤ −χc/22 + η0)

(2.1) Ef (η) = Ef = const,

• the porous core (−χc/2 + η0 ≤ η ≤ χc/2 + η0)

(2.2) Ec(η) = Ef · f (c)
e (η),

• the lower face (χc/2 + η0 ≤ η ≤ χf2 + χc/2 + η0)

(2.3) Ef (η) = Ef = const,

where the dimensionless function of the core:

(2.4) f (c)
e (η) = ec + (1− ec) sinn

[
π

χc
(η − η0)

]
,

where the dimensionless coordinate η = y/h, the neutral axis position η0 = y0/h,
the coefficient of the core ec, the dimensionless thicknesses of the layers are
χf1 = hf1/h (upper face), χc = hc/h (core), χf2 = hf2/h (lower face), and
a natural number exponent is n.

The graph of Young’s modulus variability in the depth direction of this beam
is presented in Fig. 3. The character of this variability is motivated by the ap-
plicability of three-layered structures due to their superior strength-to-mass ra-
tio compared to homogeneous structures. The proposed distribution constitutes
a generalised three-layered, structure which also enables one to describe and
solve problems of isotropic beams. Such variability can be achieved by introduc-
ing a porosity, using a variable mixture of different materials, or by designing
a specific cross-sectional geometry to be produced using additive manufactur-
ing techniques. Unlike typical three-layered sandwich structures, the introduced
model maintains continuity of stiffness due to the considered functionally graded
core.
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Fig. 3. Graph of the Young’s modulus variability in the depth direction of the beam.

The dimensionless coordinate η0 of the neutral axis position is calculated
based on the zeroing condition of the first moment of the beam cross section,
with consideration of Young’s modulus, in the following form:

(2.5) S̄(uf)
z + S̄(c)

z + S̄(lf)
z = 0,

where

S̄(uf)
z = −1

2
(χf1 + χc − 2η0)χf1,

S̄(lf)
z =

1

2
(χf2 + χc + 2η0)χf2,

S̄(c)
z = ecχcη0 + (1− ec)

χc/2+η0∫
−χc/2+η0

η sinn
[
π

χc
(η − η0)

]
dη.

The deformation scheme of a plane cross section after bending of this sandwich
beam is presented in Fig. 4.

Taking into account Fig. 4, the longitudinal displacements, and consequently,
the strains and stresses in successive layers are as follows:
• the upper face (−χf1 − χc/2 + η0 ≤ η ≤ −χc/2 + η0):

u(uf)(x, η, t) = −h
[
η
∂v

∂x
− f (uf)

d (η)ψ(x, t)

]
,(2.6)

ε(uf)
x (x, η, t) = −h

[
η
∂2v

∂x2
− f (uf)

d (η)
∂ψ

∂x

]
, γ(uf)

xy (x, η, t) =
df

(uf)
d

dη
ψ(x, t),(2.7)

σ(uf)
x (x, η, t) = Efε

(uf)
x (x, η, t), τ (uf)

xy (x, η, t) =
Ef

2(1 + ν)
γ(uf)
xy (x, η, t);(2.8)
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Fig. 4. Scheme of the deformation of a planar cross section of the sandwich beam under
study.

• the core (−χc/2 + η0 ≤ η ≤ χc/2 + η0):

u(c)(x, η, t) = −h
[
η
∂v

∂x
− f (c)

d (η)ψ(x, t)

]
,(2.9)

ε(c)
x (x, η, t) = −h

[
η
∂2v

∂x2
− f (c)

d (η)
∂ψ

∂x

]
, γ(c)

xy (x, η, t) =
df

(c)
d

dη
ψ(x, t),(2.10)

σ(c)
x (x, η, t) = Efε

(c)
x (x, η, t) · f (c)

e (η),

τ (c)
xy (x, η, t) =

Ef
2(1 + ν)

γ(c)
xy (x, η, t) · f (c)

e (η);
(2.11)

• the lower face (χc/2 + η0 ≤ η ≤ χf2 + χc/2 + η0):

u(lf)(x, η) = −h
[
η
dv

dx
− f (lf)

d (η)ψ(x)

]
,(2.12)

ε(lf)
x (x, η, t) = −h

[
η
∂2v

∂x2
− f (lf)

d (η)
∂ψ

∂x

]
, γ(lf)

xy (x, η, t) =
df

(lf)
d

dη
ψ(x, t),(2.13)

σ(lf)
x (x, η, t) = Efε

(lf)
x (x, η, t), τ (lf)

xy (x, η, t) =
Ef

2(1 + ν)
γ(lf)
xy (x, η, t),(2.14)
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where v(x,t) – the deflection, ψ(x, t) – the dimensionless longitudinal displace-
ment function, ν – Poisson’s ratio, f (uf)

d (η), f (c)
d (η), f (lf)

d (η) – the dimensionless
deformation functions.

The unknown dimensionless deformation functions f (uf)
d (η), f (c)

d (η), f (lf)
d (η)

are determined with consideration of the classical shear stress formula, similarly
to that in [20]. Thus, these functions for successive layers are as follows:
• the upper face (−χf1 − χc/2 + η0 ≤ η ≤ −χc/2 + η0):

(2.15) f
(uf)
d (η) = Cf1 +

1

2

[(
χf1 +

1

2
χc − η0

)2

− 1

3
η2

]
η;

• the core (−χc/2 + η0 ≤ η ≤ χc/2 + η0):

(2.16) f
(c)
d (η) =

∫
Q̄

(c)
z (η)

f
(c)
e (η)

dη;

• the lower face (χc/2 + η0 ≤ η ≤ χf2 + χc/2 + η0):

(2.17) f
(lf)
d (η) = Cf2 +

1

2

[(
χf2 +

1

2
χc − η0

)2

− 1

3
η2

]
η,

where

Q̄(c)
z (η) =

1

2

{
(χf1 + χc − 2η0)χf1 +

[(
1

2
χc − η0

)2

− η2

]
ec − 2(1− ec)Jc1(η)

}
,

Cf1 =
1

2

[(
χf1+

1

2
χc−η0

)2

− 1

3

(
1

2
χc−η0

)2](1

2
χc − η0

)
−

0∫
−χc/2+η0

Q̄
(c)
z (η)

f
(c)
e (η)

dη,

Cf2 = −1

2

[(
χf2+

1

2
χc+η0

)2

− 1

3

(
1

2
χc+η0

)2](1

2
χc + η0

)
+

χc/2+η0∫
0

Q̄
(c)
z (η)

f
(c)
e (η)

dη,

Jc1(η) =

η∫
−χc/2+η0

η1 sinn
[
π

χc
(η1 − η0)

]
dη1.

3. Analytical study of buckling and free flexural vibration problems

The kinetic energy is given by:

(3.1) Uk =
1

2
ρbbh

L∫
0

(
∂v

∂t

)2

dx,
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where

ρb =

{
χf1 + χf2 +

√
ecχc + (1−

√
ec)

χc/2+η0∫
−χc/2+η0

sinn
[
π

χc
(η − η0)

]
dη

}
ρf

is the mass density of the beam, ρf – the mass density of the faces, and t – time.
The elastic strain energy is given by:

(3.2) Ues =
1

2
bh

L∫
0

[
Φ(uf)
ε,γ (x, t) + Φ(c)

ε,γ(x, t) + Φ(lf)
ε,γ (x, t)

]
dx,

where:

Φ(uf)
ε,γ (x) =

−χc/2+η0∫
−χf1−χc/2+η0

[σ(uf)
x (x, η, t) · ε(uf)

x (x, η, t) + τ (uf)
xy (x, η, t) · γ(uf)

xy (x, η, t)] dη,

Φ(c)
ε,γ(x, t) =

χc/2+η0∫
−χc/2+η0

[σ(c)
x (x, η, t) · ε(c)

x (x, η, t) + τ (c)
xy (x, η, t) · γ(c)

xy (x, η, t)] dη,

Φ(lf)
ε,γ (x, t) =

χf2+χc/2+η0∫
χc/2+η0

[σ(lf)
x (x, η, t) · ε(lf)

x (x, η, t) + τ (lf)
xy (x, η, t) · γ(lf)

xy (x, η, t)] dη.

The work of the load is as follows:

(3.3) W =
1

2
Fo

L∫
0

(
∂v

∂x

)2

dx.

Based on Hamilton’s principle:

(3.4) δ

t2∫
t1

[Uk − (Ues −W )] dt = 0,

two differential equations of motion are obtained in the following form:

ρbbh
∂2v

∂t2
+ Efbh

3

(
Cvv

∂4v

∂x4
− Cvψ

∂3ψ

∂x3

)
+ Fo

∂2v

∂x2
= 0,(3.5)

Cvψ
∂3v

∂x3
− Cψψ

∂2ψ

∂x2
+ Cψ

ψ(x, t)

h2
= 0,(3.6)
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where dimensionless coefficients are as follows:

Cvv =

−χc/2+η0∫
−χf1−χc/2+η0

η2 dη +

χc/2+η0∫
−χc/2+η0

η2f (c)
e (η) dη +

χf2+χc/2+η0∫
χc/2+η0

η2 dη,

Cvψ =

−χc/2+η0∫
−χf1−χc/2+η0

f
(uf)
d (η)η dη +

χc/2+η0∫
−χc/2+η0

f
(c)
d (η) · f (c)

e (η)η dη

+

χf2+χc/2+η0∫
χc/2+η0

f
(lf)
d (η)η dη,

Cψψ =

−χc/2+η0∫
−χf1−χc/2+η0

[f
(uf)
d (η)]2 dη +

χc/2+η0∫
−χc/2+η0

[f
(c)
d (η)]2f (c)

e (η) dη

+

χf2+χc/2+η0∫
χc/2+η0

[f
(lf)
d (η)]2 dη,

Cψ =
1

2(1 + ν)

{ −χc/2+η0∫
−χf1−χc/2+η0

(
df

(uf)
d

dη

)2

dη +

χc/2+η0∫
−χc/2+η0

(
df

(uf)
d

dη

)2

f (c)
e (η) dη

+

χf2+χc/2+η0∫
χc/2+η0

(
df

(lf)
d

dη

)2

dη

}
.

3.1. The buckling problem

Taking into account the equations of motion (3.5) and (3.6), the system of
two equations of equilibrium for a static buckling problem is as follows:

(3.7)
Cvv

d4v

dx4
− Cvψ

d3ψ

dx3
+

Fo
Efbh3

d2v

dx2
= 0,

Cvψ
d3v

dx3
− Cψψ

d2ψ

dx2
+ Cψ

ψ(x)

h2
= 0.

This system is approximately solved with two assumed functions: v(x) – the
deflection and ψ(x) – the dimensionless longitudinal displacement. The buckling
problem of the beam on three different types of supports, with consideration of
the paper [19], is studied:
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• Simply supported – B-1 (Fig. 1a):

(3.8) v(x) = va sin

(
π
x

L

)
, ψ(x) = ψa cos

(
π
x

L

)
,

where va, ψa – parameters of the functions.
These functions satisfy the following boundary-supported conditions: v(0) =

v(L) = 0, dψ/dx|0 = dψ/dx|L = 0. Substituting these functions (3.8) into
Eqs. (3.7), after a simple transformation, one obtains the homogeneous algebraic
equation system, from which the critical force is in the form:

(3.9) F
(B−1)
o,CR = F̄

(B−1)
o,CR · Efbh,

where the dimensionless critical force is:

(3.10) F̄
(B−1)
o,CR = (1− C(B−1)

se )
π2

λ2
Cvv,

and the shear coefficient:

(3.11) C(B−1)
se =

π2C2
vψ

π2Cψψ + λ2Cψ
· 1

Cvv
,

where λ = L/h – the relative length of the beam.
• Simply supported at one end and clamped at the other – B-2 (Fig. 1b):

(3.12) v(x) = va

[
x

L
− sin(kx/L)

sin k

]
, ψ(x) = ψa

[
1− k cos(kx/L)

sin k

]
,

where the coefficient k = π/0.6991557 ∼= 4.493409⇒ k/tan k = 1.
Assuming this specific value of the parameter k, these functions satisfy the fol-

lowing boundary-supported conditions: v(0) = v(L) = dv/dx|L = 0, dψ/dx|0 =
ψ(L) = 0. Using the Galerkin method after substituting functions (3.12) into
Eqs. (3.7), allows one to calculate the critical force:

(3.13) F
(B−2)
o,CR = F̄

(B−2)
o,CR · Efbh,

where the dimensionless critical force:

(3.14) F̄
(B−2)
o,CR = (1− C(B−2)

se )
k2

λ2
Cvv,

and the shear coefficient:

(3.15) C(B−2)
se =

k2C2
vψ

k2Cψψ + λ2Cψ
· 1

Cvv
.
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• Clamped ends – B-3 (Fig. 1c):

(3.16) v(x) =
1

2
va

[
1− cos

(
2π
x

L

)]
, ψ(x) = ψa sin

(
2π
x

L

)
.

These functions satisfy the following boundary-supported conditions: v(0) =
v(L) = dv/dx|0 = dv/dx|L = 0, ψ(0) = ψ(1) = 0. Inserting functions (3.16) into
Eqs. (3.7) following some rearrangements leads to the expression for the critical
force:

(3.17) F
(B−3)
o,CR = F̄

(B−3)
o,CR · Efbh,

where the dimensionless critical force:

(3.18) F̄
(B−3)
o,CR = (1− C(B−3)

se )
4π2

λ2
Cvv,

and the shear coefficient:

(3.19) C(B−3)
se =

4π2C2
vψ

4π2Cψψ + λ2Cψ
· 1

Cvv
.

3.2. The free flexural vibration problem

The two differential equations of motion (3.5) and (3.6) neglecting the axial
force Fo are of the form:

(3.20)

ρb
Efh2

∂2v

∂t2
+ Cvv

∂4v

∂x4
− Cvψ

∂3ψ

∂x3
= 0,

Cvψ
∂3v

∂x3
− Cψψ

∂2ψ

∂x2
+ Cψ

ψ(x, t)

h2
= 0.

This system is approximately solved, similarly to the buckling problem, with
two assumed functions: v(x,t) – the deflection and ψ(x, t) – the dimensionless
longitudinal displacement. The free flexural vibration problem of the beam on
three different types of supports is studied:
• Simply supported – B-1 (Fig. 1a):

(3.21) v(x, t) = va(t) sin

(
π
x

L

)
, ψ(x, t) = ψa(t) cos

(
π
x

L

)
,

where va(t), ψa(t) – the functions of time.
Substituting these functions (3.21) into Eqs. (3.20), after a simple transfor-

mation, one obtains the following differential equation:

(3.22)
ρb
Ef

d2va
dt2

+
π4

λ2L2
(1− C(B−1)

se )Cvvva(t) = 0.
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This equation (3.22) is approximately solved with the assumption of the function:

(3.23) va(t) = va sin(ωt),

where va [mm] – the amplitude of the flexural vibration, and ω [rad/s] – the fun-
damental natural frequency. The fundamental natural frequency can be obtained
by substituting the function (3.23) into Eq. (3.22), which results in:

(3.24) f (B−1)
z =

ω

2π
=
π · 103

2λL

√
(1− C(B−1)

se )
Ef
ρb
Cvv [Hz],

where dimensions of quantities: Ef [MPa], ρb [kg/m3] and length L [m].
• Simply supported at one end and clamped at the other – B-2 (Fig. 1b):

(3.25)
v(x, t) = va(t)

[
x

L
− sin(kx/L)

sin k

]
,

ψ(x, t) = ψa(t)

[
1− k cos(kx/L)

sin k

]
.

Using the expressions in Eqs. (3.20), applying them to the functions (3.25), and
referring to the Galerkin method, enables derivation of the following differential
equation:

(3.26)
ρb
Ef

d2va
dt2

+
3

5

k4

λ2L2
(1− C(B−2)

se )Cvvva(t) = 0.

This equation (3.26) is approximately solved with the assumption of the function
from Eq. (3.23). The fundamental natural frequency is then as follows:

(3.27) f (B−2)
z =

ω

2π
=
k2 · 103

2πλL

√
3

5
(1− C(B−2)

se )
Ef
ρb
Cvv [Hz].

• Clamped ends – B-3 (Fig. 1c):

(3.28) v(x, t) =
1

2
va(t)

[
1− cos

(
2π
x

L

)]
, ψ(x) = ψa(t) sin

(
2π
x

L

)
.

Proceeding in the same way as for beam B-1, one obtains the fundamental
natural frequency as:

(3.29) f (B−3)
z =

ω

2π
=

2π · 103

λL

√
1

3
(1− C(B−3)

se )
Ef
ρb
Cvv [Hz].
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4. Example detailed calculations

An exemplary analytical study is carried out for beams of a relative length
λ = 30, Poisson’s ratio ν = 0.3, coefficient of the core ec = 1/30, the exponent
n = 14 with three selected sandwich structures (Table 1) and the following
material parameters: Ef = 72GPa, ρf = 2710 kg/m3.

Table 1. The values of dimensionless sizes of three beam structures: S-1, S-2, S-3.

Structure S-1 S-2 S-3
χf1 8/40 7/40 6/40
χc 28/40 28/40 28/40
χf2 4/40 5/40 6/40
η0 0.1075092 0.0537546 0

The results of example calculations: the values of the shear coefficient, crit-
ical force, and fundamental natural frequency for beams B-1, B-2, and B-3 are
specified in Tables 2, 3, 4, respectively. Due to the ability to include the shear
effect in the proposed analytical model, additional calculations are carried out
considering the decrease in the relative length λ, as shown in Table 5. This
could potentially indicate the limits of applicability of the proposed model when
compared to the numerical study described further in the paper.

Table 2. The results of example calculations for beam B-1 (Fig. 1a).

Structure S-1 S-2 S-3
C

(B−1)
se 0.0357022 0.0372337 0.0377453

103F̄
(B−1)
o,CR [–] 0.69880 0.72046 0.72766

f
(B−1)
z [Hz] 76.717 77.897 78.285

Table 3. The results of example calculations for beam B-2 (Fig. 1b).

Structure S-1 S-2 S-3
C

(B−2)
se 0.0700697 0.0731603 0.0741940

103F̄
(B−2)
o,CR [–] 1.37861 1.41887 1.43222

f
(B−2)
z [Hz] 119.382 121.112 121.681

Table 4. The results of example calculations for beam B-3 (Fig. 1c).

Structure S-1 S-2 S-3
C

(B−3)
se 0.1273356 0.1332095 0.1351787

103F
(B−3)
o,CR [–] 2.52957 2.59454 2.61592

f
(B−3)
z [Hz] 168.542 170.692 171.394
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Table 5. The results of example calculations for beam B-1 (Fig. 1c) and S-1 structure for
various relative length λ.

λ [–] 15 20 25
C

(B−1)
se 0.1273356 0.0764587 0.0505109

103F
(B−1)
o,CR [–] 2.52957 1.50584 0.99082

f
(B−1)
z [Hz] 291.923 168.925 109.620

5. Numerical FEM study

To verify the results of the derived analytical model, the studied beams are
investigated numerically using FEM analyses conducted in ANSYS 2023 R2
software. Both modal and buckling analyses are performed. Taking into account
the non-dimensional form of the analytical calculations, the following exemplary
values of geometric parameters are assumed in the numerical model: b = h =
40mm and L = 1200mm, thus λ = 30. The Young’s modulus of the faces is
set to Ef = 72GPa, while the density ρf = 2710 kg/m3 which corresponds to
aluminium alloys.

F
y

x

z

B-1: v = w = φx = φy = 0

B-2: v = w = φx = φy = 0

B-3: v = w = φx = φy = φz = 0

B-1: u = v = w = φx = φy = 0

B-2: u = v = w = φx = φy = φz = 0 
B-3: u = v = w = φx = φy = φz = 0  

b

h

w = 0 (symmetry)

Fig. 5. Geometry and boundary conditions in the numerical model.

To simplify the numerical model, only half of the beam is studied due to the
expected symmetry in the xy plane, as shown in Fig. 5. The boundary conditions
reflect the structural behaviour of the beams investigated in the analytical study,
as presented in Fig. 5. Following the analytical study, the beam core has non-
homogeneous properties and follows exactly the Young’s modulus distribution
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given in Eqs. (2.2) and (2.4). The calculated values of this mechanical property
are assigned to the centres of finite elements, while their sufficient number ensures
an accurate and smooth distribution of Young’s modulus.

The geometry of the beam is divided into uniform first-order hexahedral finite
elements with 8 nodes and 24 degrees of freedom described as SOLID185 in the
ANSYS software. The choice of first-order elements is motivated by the fact
that the precision of Young’s modulus distribution depends on the number of
finite elements. When comparing models divided into first- and second-order
elements with the same number of nodes, the latter provides a significantly
smaller number of finite elements. To ensure satisfactory quality of the results,
a mesh convergence study is conducted, focusing on the critical load and natural
frequency as criteria. It is concluded that when a numerical model consists of
300, 90 and 10 elements along x, y, z directions (Fig. 5), upon further increase
of the number of elements, leads to a marginal difference in results. Thus, such
a model is used in the numerical study. It is important to note that the size
of finite elements in the core towards y direction is half the size of the elements
in the faces. This is because there is no necessity for a highly accurate mesh
for isotropic material. The segment of the beam divided into finite elements is
shown in Fig. 6, whereas an exemplary Young’s modulus distribution is presented
in Fig. 7.

Fig. 6. Segment of the beam divided Fig. 7. Young’s modulus distribution
into finite elements. in the segment of the beam.

Exemplary results are shown in Figs. 8 and 9 for selected vibration and
buckling analyses, respectively. The latter is obtained by applying a compressive
force of 1 kN. Taking into account the load multiplier and the compressive force
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Fig. 8. Modal analysis result for the S-1 beam structure and the B-1 boundary condition.

Fig. 9. Linear buckling analysis for the S-3 beam structure and the B-3 boundary condition.

Table 6. The results and comparison of the numerical FEM modal and buckling analyses
for different structures and boundary conditions.

Beam Structure S-1 S-2 S-3
B-1

103F̄o,CR [–]
0.6984 0.7201 0.7274

B-2 1.3734 1.4139 1.4273
B-3 2.5477 2.6173 2.6404
B-1

fz [Hz]
76.73 77.91 78.30

B-2 116.52 118.17 118.72
B-3 163.41 165.52 166.21
B-1

∆103F̄o,CR [%]
0.06 0.05 0.04

B-2 0.38 0.35 0.34
B-3 0.72 0.88 0.94
B-1

∆fz [%]
0.02 0.02 0.02

B-2 2.40 2.43 2.43
B-3 3.04 3.03 3.02
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value, the results are incoherent with the values provided in Table 4. This is
because the analytical solution considered the critical load in dimensionless form.
To resolve the coherent value, it is necessary to transform Eq. (3.17) for the
dimensionless critical force.

The results of the finite element analysis are provided in Table 6 for natural
frequencies and buckling, considering all boundary conditions and different beam
structures. These are compared with the outcome of the analytical study in
the form of relative differences ∆103F̄o,CR and ∆fz. To verify the accuracy of
the proposed model for shorter beams, additional numerical analyses are carried
out, whose results are shown and compared to the previous study in Table 7.

Table 7. The results and comparison of the numerical FEM modal and buckling analyses.

λ [–] 15 20 25

103F̄
(B−1)
o,CR [–] 2.55347 1.51041 0.991319

f
(B−1)
z [Hz] 292.821 169.122 109.672

∆103F̄
(B−1)
o,CR [%] 0.94 0.30 0.05

∆f
(B−1)
z [%] 0.31 0.12 0.05

6. Conclusions

The proposed form of Young’s modulus distribution allows the study of
structures with highly varied mechanical properties. Depending on the selected
parameters, single- and three-layer beams can be analysed, with an optional
stiffness ratio between the layers due to the generalised form of the proposed
model.

As expected, the symmetrical properties of the structures studied resulted in
the highest critical loads and natural frequencies among all the support condi-
tions considered. Increasing the difference between the thicknesses of the faces
leads to increased deterioration of results compared to the symmetrical structure
with an equivalent core thickness. One must consider that the introduction of
asymmetry does not significantly affect the mechanical behaviour of the ana-
lysed beams. For example, compared to a symmetrical structure, if one face is
twice as thick as the other, the critical load is approximately 4% lower, while the
decrease in natural frequency is merely 2%. These values are related to the sim-
ply supported boundary condition, which yields the highest discrepancy between
symmetric and asymmetric structures.

To validate the consistency of the proposed analytical model, a numerical
FEM study was undertaken for the coherent case studies. A comparison of
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the results suggests that the maximum relative differences in natural frequency
and critical load are 0.04% and 0.94%, respectively. One may notice that the
relative differences are negligible for simply supported beams (B-1), whereas
the introduction of fixed rotation supports (B-2, B-3) results in elevated but
still limited discrepancies. It can be noted that the specific beam structure, i.e.,
Young’s modulus distribution in the core, has a moderate impact on the results’
consistency and can be considered somewhat ambiguous. Additional analyses
revealed that a decrease in relative length leads to marginally increased relative
differences between the numerical and analytical models. This shows that the
proposed approach successfully compensates for shear effects.

Unlike numerous theories that study the buckling and vibrations of com-
posites, the proposed approach allows for consideration of shear effects and
achieves closed-form solutions. Taking into account the accuracy proven by the
numerical FEM study, this approach can be considered original and suitable for
solving vibration and buckling problems in functionally graded sandwich beam
structures.
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