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The stagnation point flow of an incompressible viscous electrically conduct-
ing fluid impacting orthogonally on a heated rotating disk is studied with internal
volumetric heat generation/absorption in the presence of a uniform magnetic field.
A uniform suction or injection is applied through the surface of the disk. Appropri-
ate similarity transformations are used to reduce the governing differential equations
of the problem into a system of nonlinear ordinary differential equations and then
solved numerically using the fourth-order Runge–Kutta method. In the second step,
the work is oriented towards linear stability analysis by considering infinitesimally
small disturbances within the boundary layer. Using normal mode decomposition in
the Görtler–Hammerlin framework, the resulting eigenvalue problem is then solved
numerically by means of the pseudo-spectral method using Laguerre’s polynomials.
As a result, the critical conditions for the onset of thermal instability are described
and discussed in detail using multiple configurations. It is found that the presence
of a magnetic field and suction/injection act to increase the stability of the basic
flow. However, the rotation parameter and the internal heat generation/absorption
contribute significantly to destabilizing the basic flow.
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1. Introduction

Recent research in the field of engineering and industrial applica-
tions has paid much attention to the study of the MHD flow over a rotating disk.
Theoretical and experimental studies for the MHD flow over a rotating disk with
heat transfer appear interesting in different versatile applications. Much effort
on this phenomenon has been focused on a wide range of areas such as air clean-
ers, gas turbine rotors, medical equipment, chemical vapor deposition processes,
aerodynamic engineering and thermal power generation systems.

In the rotating disk systems, the hydrodynamic flow of a rotating infinite
disk was originally initiated by von Kármán [1] who introduced the first simi-
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larity transformations to convert partial differential equations into ordinary dif-
ferential equations. Orthogonal forced flow was first examined by Hannah [2].
The influence of a uniform external magnetic field on a steady flow generated
by the rotating disk was examined in [3, 4]. The stagnation point flow prob-
lem has been extended in various interesting applications with different physical
characteristics, where the effect of uniform suction/injection on the steady axi-
symmetric flow of an incompressible viscous electrically conducting fluid with
heat transfer was investigated by Attia [5]. Arikoglu et al. [6] have intro-
duced a semi-numerical analytical technique to analyze the effect of slip on en-
tropy generation in magnetohydrodynamic flow over a rotating disk. The effect
of a uniform vertical magnetic field on the steady boundary layer stagnation
flow of an electrically conducting fluid impinging on a rotating stretching disk
was investigated by Turkyilmazoglu et al. [7]. Imtiaz et al. [8] have con-
sidered a sliding velocity at the fluid-solid interface to analyze the character-
istics of magnetohydrodynamic flow by a rotating disk of a variable thickness.
Hayat et al. [9] explored the heat transfer in the presence of thermal radiation
in the MHD flow of a viscous fluid through a rotating disk of variable thickness.
Several studies have been carried out on the famous von Kármán problem, which
is extensively studied in different fields of applications. Mustafa [10] extended
the von Kármán problem of the infinite rotating disk where the space above the
rough disk is equipped by an electrically conductive nanofluid. In the presence of
a magnetic field in an electrically conductive fluid flow, viscous dissipation and
Joule heating is a spontaneous and inevitable phenomenon. In this field, viscous
dissipation in a nanomaterial flow by a rotating disk was studied by Hayat
et al. [11], they then investigated the entropy generation in magnetohydrody-
namic radiative flow due to rotating disk in the presence of viscous dissipation
and Joule heating [12]. Recently, Rahman et al. [13] have studied the unsteady
three-dimensional magnetohydrodynamics flow of nanofluids over a decelerated
rotating disk with uniform suction.

The instability that governs fluid flow is a fundamental subject of fluid me-
chanics in which the analysis of transitional flows to turbulence is linked to
heat transfer and convective motions. These flow models have been studied by
many scientists to understand the boundary layer transition processes. Advances
in the stability theory and experimentation of rotating flows have been increas-
ingly confronted with fairly complex challenges in recent decades. To the authors’
knowledge, few studies concerning thermal instability are available in the liter-
ature. By highlighting reported studies on the stability analysis, the stability of
three-dimensional rotating-disk flow was investigated by Malik et al. [14, 15].
Huerre and Monkewitz [16] examined the theory of hydrodynamic stability
of spatially developing flows relating to the concepts of absolute/convective and
local/global instability. Lingwood [17] examined the characteristics of bound-
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ary layer flow over a rotating disk in an otherwise still fluid by analyzing the
inviscid stability of the flow and the stability with viscous curvature, Coriolis,
and streamlining effects. Lee et al. [18] have employed the linear stability the-
ory to analyze the stability of 3D boundary-layer flow introduced in a rotating
disk system. The impact of the magnetic field of such concepts on the fluid
flow instabilities can be found in [19, 20]. Stability analysis of the stagnation
point flow has been the subject of numerous scientific applications associated
with industry and mechanical engineering, some studies on this topic can be
seen in [21–23]. Healey [24] examined the relation between viscous and invis-
cid absolute instabilities in a boundary layer flow induced by a rotating disk. The
absolute and convective instability of the von Kármán rotating disk flow with
a temperature-dependent viscosity was analyzed by Jasmine and Gajjar [25].
Turkyilmazoglu et al. [26] introduced a global view clarifying the compress-
ible viscous modes leading in particular to absolute instability in a generalized
three-dimensional von Kármán boundary layer flow due to a rotating disk. The
linear behavior of an impulse disturbance on the global instability of the ro-
tating disk boundary layer was studied in a linear and nonlinear simulation by
Appelquist et al. [27]. Mendil et al. [28] investigated the thermal instability of
two-dimensional stagnation point flow in temperature-dependent viscosity fluid.
Bouda et al. [29] analyzed the effects of mass transfer on the thermal instability
of a two-dimensional boundary layer stagnation point flow when thermal and
concentration buoyancy forces are of opposite signs. The onset of instabilities
of a two-dimensional mixed convection boundary layer flow induced by an im-
pinging ascending flow on a heated horizontal cylinder was studied in [30]. From
recent studies on the stagnation point flow, Miller et al. [31] have analyzed
the linear stability analysis of temperature-dependent boundary layer flow on
a rotating disk. Mukherjee and Sahoo [32] investigated the effect of slip con-
dition on the convective instability characteristics of the stagnation point flow
over a rough rotating disk. An experimental investigation of the effect of heating
on the stability of three-dimensional boundary layer flow over a rotating disk
was performed by Wiesche and Helcig [33].

The transition from laminar to turbulent flow with heat transfer remains
a large-scale open problem, of which the current paper focuses on the stabil-
ity analysis of the stagnation point flow of an electrically conducting fluid, in
the presence of a magnetic field, suction/injection and internal heat genera-
tion/absorption effects. Our main motivation is to extend the previous studies
by analyzing the critical conditions for the onset of thermal instabilities. For
this purpose, the resulting eigenvalue problem has been constituted by applying
the linear stability theory based on the normal mode decomposition of Görtler–
Hammerlin [34, 35], which is solved numerically by means of a pseudo-spectral
collocation method using Laguerre’s polynomials. It is found that the presence
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of a magnetic field and suction/injection act to increase the stability of the ba-
sic flow. However, the critical conditions for the onset of thermal instability are
significantly affected by the internal heat generation/absorption parameter, and
increasing this parameter decreases the stability of the basic flow.

2. Problem statement and mathematical formulation

We consider the steady incompressible MHD flow impinging on a heated
permeable disk rotating about its axis with a constant angular velocity Ω∗.
In the cylindrical coordinate system, the external velocity is prescribed as
V∗∞(ar∗, 0,−2az∗), where a is a positive constant characterizing the velocity
of the mainstream flow. Let p∗, T , u∗, v∗ and w∗ denote the steady state of the
pressure, temperature and velocity in the r∗, θ, and z∗ directions, respectively.
The coordinate frame is not related to the disk rotation, and the disk is main-
tained at a fixed temperature Tw higher than the ambient fluid temperature T∞.
The heat transfer process is explored subject to internal volumetric heat gener-
ation/absorption. The uniform magnetic field is applied in z∗-direction with the
strength B as shown in Fig. 1.

Fig. 1. Physical model for flow domain.

The physical properties of the fluid are assumed constant except the density
in the buoyancy force term, which is satisfied by the Boussinesq approximation.
The magnetic Reynolds number is assumed to be small so that the induced
magnetic field can be neglected. In addition, there is no applied electric field and
all of the Hall effect, viscous dissipation, and Joule heating are neglected. Un-
der these assumptions, the conservation of mass, momentum, and energy equa-
tions are given in their dimensional form of temperature T and velocity V∗ as
follows [22, 36]:
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∇·V∗ = 0,(2.1)
∂V∗

∂t∗
+(V∗ ·∇)V∗ = −1

ρ
∇p∗+υ∇2V∗−gβ(T−T∞)+

σ

ρ
(V∗∧B)∧B,(2.2)

∂T

∂t∗
+(V∗ ·∇)T =

1

ρCp
{k∇2T+Q∗(T−T∞)}.(2.3)

In the above equations, stars (∗) indicate dimensional quantities, t∗ denotes
the time, g the gravitational acceleration, and Q∗ is the internal volumetric heat
generation/absorption. Here, ρ, υ, σ, β, Cp and k are respectively the density,
kinematic viscosity, electrical conductivity, thermal expansion coefficient, specific
heat, and thermal conductivity of the fluid.

The system of equations (2.1)–(2.3) is subject to the following boundary
conditions, such that the radial and azimuthal velocities on the disk are subject to
non-slip conditions, while the axial one is subject to the uniform suction/injection
through the disk. Far from the disk, the flow tends to the external stream.
Concerning the thermal conditions, the temperature at the disk is maintained
at (Tw), whereas, at the infinity, it is assumed that the temperature is equal to
that of the external flow (T∞) such as:

u∗ = 0, v∗ = r∗Ω∗, w∗ = wS , T = Tw at z∗ = 0,(2.4)
u∗ = ar∗, v∗ = 0, w∗ = −2az∗, T = T∞ as z∗ →∞,(2.5)

where wS is the velocity of suction (wS < 0) or injection (wS > 0) through the
disk. The subscripts (w) and (∞) stand for the wall and free stream conditions.
For the problem modeling, the dimensionless form of the equation system is
achieved by the scale variables given below:

(2.6) t = at∗, (r, z) =

√
a

υ
(r∗, z∗), V =

√
1

υa
V∗, Θ =

T − T
Tw − T∞

, p =
p∗

ρυa
.

3. Solution of the basic flow

In order to resolve the steady basic flow, all the physical quantities are as-
sumed to be independent of the (θ) variable since the flow is axisymmetric around
the z∗-axis. Applying the scaling variables (2.6) and the boundary layer approx-
imation, the resulting equation system becomes in its dimensionless form as
follows:

∂u

∂r
+
u

r
+
∂w

∂z
= 0,(3.1)

u
∂u

∂r
− v2

r
+ w

∂u

∂z
= −∂p

∂r
+
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+
∂2u

∂z2
−Mu,(3.2)
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u
∂v

∂r
+
uv

r
+ w

∂v

∂z
=
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+
∂2v

∂z2
−Mv,(3.3)

u
∂w

∂r
+ w

∂w

∂z
= −∂p

∂z
+
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2
−Gr Θ,(3.4)

u
∂Θ

∂r
+ w

∂Θ

∂z
=

1

Pr

(
∂2Θ

∂r2
+

1

r

∂Θ

∂r
+
∂2Θ

∂z2

)
+QΘ.(3.5)

The above equations can be reduced, after eliminating the pressure term
by subtracting Eq. (3.2) from Eq. (3.4) after deriving them with respect to
(∂/∂r, ∂/∂z), respectively. The buoyancy force term shown in Eq. (3.4) is ex-
pressed in terms of the Grashof number Gr = (gβ(Tw − T∞)`3/υ2), where
` = (υ/a)1/2. Here, Pr = (υ/α) is the Prandtl number, M = (σB2`2/µ) is
the magnetic parameter (the Hartmann number squered), where α and µ are
respectively the thermal diffusivity and dynamic viscosity of the fluid, Q =
(Q∗/(aρCp)) is the internal heat generation/absorption parameter.

After introducing the following similarity transformation [10]:

(3.6) u(r, z) = rf ′(z), v(r, z) = rh(z), w(r, z) = −2f(z), Θ(r, z) = Θ(z),

thanks to such a form of similarity transformation, the continuity equation (3.1),
is automatically satisfied. Then, Eqs. (3.1)–(3.5) are written in terms of f(z),
h(z) and Θ(z) leading to the following coupled nonlinear ordinary differential
equations:

f ′′′ + 2ff ′′ − f ′2 + h2 +M(1− f ′) + 1 = 0,(3.7)
h′′ − 2f ′h+ 2fh′ −Mh = 0,(3.8)
Θ′′ + 2Pr fΘ′ +QΘ = 0,(3.9)

where the prime denotes differentiation with respect to z. Note that the system
of Eqs. (3.7)–(3.9) can be compared with that one established in [5, 8, 14].

The transformed boundary conditions are given by:

(3.10)

{
f(0) = S, f ′(0) = 0, h(0) = Ω, Θ(0) = 1 at z = 0,

f ′(∞) = 1, h(∞) = Θ(∞) = 0 as z →∞,

where Ω = (Ω∗/a) denotes the dimensionless rotation parameter and S =
−(wS/2

√
υa) is the uniform suction (S > 0) or the injection (S < 0) parameter.

At the disk, the mathematical expression of the shear stresses in the radial
and tangential directions τr and τθ are defined as follows:

(3.11)

τr = µ

(
∂u∗

∂z∗
+
∂w∗

∂r∗

)∣∣∣∣
z∗=0

, τθ = µ

(
∂v∗

∂z∗
+

1

r∗
∂w∗

∂θ

)∣∣∣∣
z∗=0

,

Cf =

√
τ2
r + τ2

θ

ρ(ar)2
.
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Using the similarity transformation (3.6), the local skin friction coefficient is
given as

(3.12) rCf =
√
f ′′(0)2 + h′(0)2.

The rate of heat transfer is defined as

(3.13) Nu =
r∗ qw

k(Tw − T∞)

∣∣∣∣
z∗=0

with qw = −k ∂T
∂z∗

∣∣∣∣
z∗=0

.

In dimensionless form, the local Nusselt number can be written in the fol-
lowing form:

(3.14) Nu /r = −Θ′(0).

By integrating the shooting method, the coupled nonlinear ordinary differen-
tial equations (3.7)–(3.9) along with their boundary conditions (3.10) are solved
numerically using the fourth-order Runge–Kutta method. In all calculations, the
step size is taken as ∆z = 0.01 and the process is repeated until a desired preci-
sion of 10−6. However, for such a level of accuracy, the iterative process required
a significant increase in calculation time. The resolution of the equations system
was carried out for Ω = [0, 1], Pr = [0.7, 7], M = [0, 15], S = [−1.5, 1.5] and
Q = [−0.4, 0.4], and the characteristics of the velocity and heat transfer fields
obtained from these solutions are presented in Section 6.

4. Linear stability analysis

The process of linear stability analysis consists of identifying the wavenum-
bers and frequencies corresponding to the waves supported by the system. Most
stability studies generally adopt a purely temporal or spatial instability ap-
proach. However, introducing the concepts of absolute and convective instability
has revealed the limitations of relying only on spatial or temporal instability
analysis. In [17, 24], the temporal theory assumes that disturbances develop
over time from an initial spatial distribution. This would imply that the wave
number is real and the frequency is complex. As for a spatial theory, it as-
sumes the opposite case. Thus, the disturbances evolve in space from an initial
temporal distribution. In the problem at hand, we are interested in temporal
instability where the perturbations increase with time at each fixed point in
space [21, 23]. To understand the destabilizing mechanisms linked to the tran-
sition to secondary flow, the work is oriented towards linear stability analysis
to examine the temporal growth and spatial amplification related to the differ-
ent stages of the transition to turbulence. The stability analysis then involves
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imposing infinitesimally small disturbances on the mean flow so that the in-
stantaneous quantities q̄ = (ū, v̄, w̄, P̄ , Θ̄) can be expressed as the sum of the
basic-state q = (u, v, w, p,Θ) and the disturbance-state q̃ = (ũ, ṽ, w̃, p̃, Θ̃) quan-
tities as:

(4.1) q̄(r, θ, z, t) = q(r, z) + q̃(r, θ, z, t).

Introducing the above decompositions (4.1) into the governing equations of
continuity, momentum and energy, by subtracting the base state and neglecting
the nonlinear terms, i.e. ũ(∂ũ/∂r), the mean-flow solutions are now subject to
small perturbation quantities leading to:

∂ũ

∂r
+
ũ

r
+

1

r

∂ṽ

∂θ
+
∂w̃

∂z
= 0,(4.2) (

∂

∂t
+
∂u

∂r
+ u

∂

∂r
+
v

r

∂

∂θ
+ w

∂

∂z
−∇2 +M

)
ũ(4.3)

− 2
v

r
ṽ +

∂u

∂z
w̃ +

∂p̃

∂r
= 0,(

∂v

∂r
+
v

r

)
ũ+

(
∂

∂t
+ u

∂

∂r
+
v

r

∂

∂θ
+ w

∂

∂z
+
u

r
−∇2 +M

)
ṽ(4.4)

+
∂v

∂z
w̃ +

1

r

∂p̃

∂θ
= 0,(

∂

∂t
+
v

r

∂

∂θ
+
∂w

∂z
+ w

∂

∂z
−∇2

)
w̃ +

∂p̃

∂z
+ Gr Θ̃ = 0,(4.5) (

∂

∂t
+
v

r

∂

∂θ
+ w

∂

∂z
− 1

Pr
∇2 −Q

)
Θ̃ + w̃

∂Θ

∂z
= 0,(4.6)

where ∇2 is the usual Laplacian operator in the cylindrical coordinates (r, θ, z).
Note that the quantities u, v, w, and Θ correspond to the basic flow func-
tions given by expressions (2.6). The present work focuses on thermal insta-
bility, where the Grashof number Gr controls the problem stability and the
corresponding Reynolds number (Re = Ωr2) near the stagnation point, where
the flow remains laminar, is relatively small, i.e. Re < Rec, where Rec repre-
sents the critical Reynolds number. Consequently, the stability analysis of the
preceding system (4.2)–(4.6) is now subject to a non-parallel-flow approxima-
tion, where the terms of order (1/r2) are considered. In the problem at hand, by
considering non-parallel flow effects for thermal stability analysis, the linearized
disturbance equations are not separable into r, θ and t as discussed by Ma-
lik [15] and Lingwood [17]. In this case, the strong dependence of the basic
state on the radial distance does not permit the introduction of eigenmodes in
the radial direction as indicated in [23, 28–30]. The dimensionless Navier–Stokes
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equations are linearized with respect to the disturbance quantities and give a set
of equations that is separable in (θ), and (t) is assumed to have the form

(4.7) (ũ, ṽ, w̃, p̃, Θ̃)(r, θ, z, t) = (rû, rv̂, ŵ, p̂, Θ̂)(z) exp(inθ + ω t),

where û, v̂, ŵ, p̂ and Θ̂ are complex amplitude functions of three-dimensional
small perturbation velocities, pressure, and temperature depending on z. The
azimuthal wavenumber (n) is an integer quantity, and ω is the frequency of
the disturbance in the rotating frame. The resulting stability equations are then
linearized with respect to the decomposition (4.7), and the perturbation equa-
tions may be written as a set of ordinary differential equations in the following
transformed variables:

2û+inv̂+Dŵ = 0,(4.8) (
D2+2fD−2f ′−inh−M−n

2

r2

)
û+2

(
h− in

r2

)
v̂+f ′′ŵ = ωû,(4.9) (

D2+2fD−2f ′−inh−M−n
2

r2

)
v̂−2

(
h− in

r2

)
û−h′ŵ− in

r2
p̂ = ωv̂,(4.10) (

D2+2fD+2f ′−inh−n
2

r2

)
ŵ−Dp̂−Gr Θ̂ = ωŵ,(4.11) (

D2+2PrfD−inPr h+Pr Q−n
2

r2

)
Θ̂−Pr Θ′ŵ = Pr ωΘ̂.(4.12)

The perturbations canceled out at the wall and away from the boundary layer
as indicated in the following boundary conditions:

(4.13)

{
û = v̂ = ŵ = Dŵ = p̂ = Θ̂ = 0 at z = 0,

û = v̂ = ŵ = p̂ = Θ̂ = 0 as z →∞,

where D = ∂/∂z is the differential operator with respect to z.
The pressure (p̂) and the azimuthal velocity component (v̂) can be deduced

from Eq. (4.8) and (4.10) in the form:

v̂ =
i

n
(2û+Dŵ),(4.14)

p̂ =
r2

n2

[
(D2 + 2fD − 2f ′ −M − ω)(2û+Dŵ)(4.15)

−
{(

inh+
n2

r2

)
D − inh′

}
ŵ

]
.

Then, we substitute Eq. (4.14) and (4.15) into the previous system
(4.9)–(4.11), the number of unknowns can be obviously reduced. In addition,



480 F. Mendil, S. Mamache, F. N. Bouda

this combination not only facilitates the numerical solution of the system but
also minimizes the calculation time. Indeed, the final system can be simplified
and rewritten as a set of three equations as the following form of an algebraic
eigenvalue problem:{

D2 + 2fD − 2f ′ − inh−M − n2

r2
− 4

in

(
h− in

r2

)}
û(4.16)

− 2

in

(
h− in

r2

)
Dŵ + f ′′ŵ = ωû,{

2(D2 + 2fD − 2f ′ −M)D + 4(f ′D − f ′′)
}
û(4.17)

+

{(
D2 + 2fD − inh−M − n2

r2

)
D2 − 2f ′′D − inh′′

− n2

r2

(
D2 + 2fD + 2f ′ − inh− n2

r2

)}
ŵ

+
n2

r2
Gr Θ̂ = ω

{
2Dû+

(
D2 − n2

r2

)
ŵ

}
,{

D2 + Pr(2fD − inh+Q)− n2

r2

}
Θ̂− Pr Θ′ŵ = Pr ωΘ̂,(4.18)

with the following boundary conditions

(4.19)

{
û = ŵ = Dŵ = Θ̂ = 0 at z = 0,

û = ŵ = Dŵ = Θ̂ = 0 as z →∞.

The numerical resolution of this system requires the determination of the
eigenvalue ω and the corresponding eigenfunctions û, ŵ and Θ̂ as functions of
the spanwise wavenumber n. It is well known that when ω < 0, the disturbances
are reduced over time and the stationary solution remains linearly stable. How-
ever, when ω > 0, the disturbances grow significantly with time and the flow
becomes linearly unstable. At the marginality (ω = 0), it is only for certain typi-
cal values of the Grashof number Gr that the above system can have a non-trivial
solution for given value of n, r, Pr , Ω, Q, S and M .

5. Numerical approach to stability analysis

Stability analysis is examined by solving the generalized eigenvalue problem
by means of a pseudo spectral method based on the expansion of Laguerre’s
polynomials Ln(z). It relies on the approximation of the exact solution by poly-
nomials. Consequently, in contrast to other methods such as the finite differences
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or the finite elements, it can achieve an infinite degree of accuracy. This method
is widely used in various physical configurations to approximate the boundary
layer problems so that the collocation nodes zj (j = 1, . . . , N) are selected to be
the roots of the Laguerre polynomial of degree N . By truncating the expansion
to a finite number N of terms, an approximation of the functions û, ŵ and Θ̂
noted ûN , ŵN and Θ̂N is given in the form ΓN (z) = exp(−z), with ΓN being
a polynomial of degree at most N forced to fulfill the linear system at collocation
nodes which are selected to be the zeroes of Ln(z). For more details, the numer-
ical approach has been implemented in [37]. The most important feature of this
method is the exponential convergence (the error decreases exponentially), which
allows high precision with a modest number of collocation points. However, the
use of Laguerre’s polynomials is motivated by the distribution of their zeros, i.e.
the first zeros are close to each other, and this distribution is perfectly suited
to describe regions of strong gradients such as the boundary layer problems. An
approach of the three-dimensional complex amplitude functions is given as an
approximation in the form φ̂N (ûN , ŵN , θ̂N ) defined as being [22]:

(5.1) φ̂N (z) = e−z
N∑
j=1

zLN (z)

zj(z − zj)L′N (zj)
φN (zj).

The procedure gives rise to an algebraic eigenvalue problem expressed in
terms of discretized square (3×N, 3×N) matrices A and B:

(5.2) A(r, n,Pr ,Ω,Gr , Q, S,M)ΦN = ωB(r,Pr , n)ΦN .

The system of equations (4.16)–(4.18) presents the governing perturbation
equations as an eigenvalue problem of the form (A − ωB)ΦN = 0, where ΦN

is the vector of eigenfunctions, and the quantities A and B are square matrices
containing the following non-zero coefficients terms:
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A23 = −n
2

r2
Gr I, A32 = −Pr Θ′I,

A33 = D2 +(2Pr f−2)D+

(
1−2f Pr −inPr h+QPr −n

2

r2

)
I,

B11 = I, B21 = 2(D−I),

B22 = D2−2D+

{
1−
(
n

r

)2}
I, B33 = Pr I.

The problem (5.2) is posed as a linear generalized eigenvalue problem where
ΦN denotes the expansion coefficients vector. To obtain a nontrivial solution
through all the calculations, the matrix (A−ωB) must be singular or equivalently
its determinant should vanish. This enables us to calculate the ω spectrum for
any combination of r, n, Pr , Ω, S, Q, Gr and M parameters. The basic flow is
then temporally unstable or stable whether there exists to at least one positive
eigenvalue or not. The instability occurs only above some level of heating given
by the lowest value of Gr obtained by varying the wavenumber n, which cancels
det(A) at marginality. Neutral curves (ω = 0) are generated using Newton’s
method and the iteration process is repeated until |det(A)| vanishes within the
assumed tolerance |det(A)| ≤ 10−6.

6. Results and discussion

6.1. Basic flow

Based on the numerical procedure described in the previous section, the re-
ported results are obtained by varying the involved dimensionless variables such
as the radial coordinate (r) (or radial distance), rotation parameter (Ω), Prandtl
number (Pr), Hartmann number (M), suction/injection parameter (S) and in-
ternal heat generation/absorption parameter (Q). Thereafter, great attention is
paid to analyzing the impact of the magnetic field, suction/injection and in-
ternal heat generation/absorption on the critical conditions for the appearance
of thermal instability. Before determining the critical conditions of the onset of
instability, the basic flow must be examined at the beginning since its solutions
(f, h,Θ) appear as unknown terms in the generalized algebraic eigenvalue prob-
lem (5.2). Before performing the calculations for the stability analysis, we make
a comparison of ours results concerning basic flow with those given in [38, 39]
as shown in Table 1. Without magnetic field and suction/injection parameters
(M = S = 0) taken into account in the present study, for the given values of Ω,
the comparison shows a very high level of concordance. The numerical values
of the local Nusselt number (Nu /r) are presented in Table 2, showing that the
local Nusselt number increases with the increase of each parameter except Q,
which presents an opposite behavior.
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Table 1. Initial values of f ′′ an h′ for various values of Ω when M = S = 0.

f ′′(0)

Ω Present work Heydari [38] Sarkar [39]
0 1.311938 1.311958 1.31194
1 1.573923 1.573930 1.57392
2 2.295649 2.295639 2.29564

−h′(0)

1 1.1100 1.110020 1.11000

Table 2. Initial values of −Θ′(0) for various values of Ω, Pr , M , S and Q.

Ω Pr M S Q −Θ′(0)

0 0.7 0 0 0 0.6654
0.5 0.6696
1 0.7 0.6817

7 1.5458
1 1.6447
3 1.7543
5 1.8287

−0.2 0.4967
0.05 2.1717
0.2 3.7222

−0.4 1.8404
0.1 1.7324
0.4 1.6657

Figure 2 shows the resulting mean-flow profiles for a range of S and M
values when Ω = 0.3. Figure 2(a) presents the influence of the uniform suc-
tion/injection through the disk on the radial velocity profile f ′(z) with Ω = 0.3
and M = 3. The graphs reveal that increasing S leads to a significant growth in
f ′(z). Compared with S = 0, the radial velocity field is more significant in the
case of suction velocity (S > 0). From Fig. 2(b), it appears that the impact of
the magnetic field becomes important as it increases, showing a significant in-
crease in radial velocity fields and a progressive reduction in the boundary-layer
thickness.

Figure 3 depicts the change in the azimuthal velocity field for varying values of
suction/injection parameter, the Hartmann number and the rotation parameter.
It is shown from this figure, that the velocity field and the related boundary-layer
thickness are reduced with increasing S. Here, M 6= 0 yields to the hydromag-
netic flow situation and M = 0 represents the hydrodynamic case. Figure 3(b)
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(a) (b)

Fig. 2. Variation of f ′(z) for different values of: (a) suction/injection parameter S,
(b) Hartmann number M .

(a) (b)

(c)

Fig. 3. Variation of h(z) for different values of: (a) suction/injection parameter S,
(b) Hartmann number M , (c) rotation parameter Ω.



Stability analysis of MHD stagnation flow. . . 485

shows the behavior of the azimuthal velocity by the varying Hartmann num-
ber M . The results show that the azimuthal velocity decays for higher M . In
Fig. 3(b), at a specified value of S = −0.5 and M = 3, it is noted that the
azimuthal velocity decreases with increasing Ω.

Figure 4 displays the dimensionless temperature profile for several values
of the heat generation/absorption parameter and the Prandtl number in the
presence of a magnetic field. Figure 4(a) indicates that an increase in Q shows
a notable improvement in the temperature field’s distribution as well as in the
associated thermal boundary layer thickness. Figure 4(b) presents the variation
in the temperature field as a function of the Prandtl number. It has been no-
ticed that the temperature profile decreases with increasing Pr , meaning that
the variations in Pr have the tendency to reduce the thermal boundary-layer
thickness as Pr increases.
(a) (b)

Fig. 4. Variation of Θ(z) for different values of: (a) internal heat generation/absorption Q,
(b) Prandtl number Pr .

The impact of the suction/injection effect (S) on the skin friction coeffi-
cient with respect to M is presented in Fig. 5(a). It is noted that the local skin
friction coefficient (rCf ) increases with increasing S and shows an increasing
behavior for the larger Hartmann number M . The ultimate goal of Fig. 5(b) is
to provide a unified view of the heat transfer rate through the disk surface. At
first sight, the obtained results indicate that the behavior of the local Nusselt
number (Nu /r) seems identical whatever the given values of internal heat gen-
eration/absorption parameter. Taking into account the injection effect (S < 0)
for the prescribed value of the Prandtl number (Pr = 7), the heat transfer rate
increases for a larger value of M . This shows that the efficiency of heat transfer
to the disk surface decreases with increasing (Q). In the presence of the mag-
netic field, we can also confirm that the thermal boundary layer thickness is
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(a) (b)

Fig. 5. Variation of local skin friction coefficient and Nusselt number with respect to M for
different values of: (a) section/injection parameter S, (b) internal heat

generation/absorption Q.

expanding when heat generation/absorption is allowed as shown previously in
Fig. 4(a). The observations show that the heat absorption effect (Q < 0) has
a marked impact compared to that of the heat generation effect (Q > 0) which
has less influence on the heat transfer rate. On the other hand, the growth in
the Nusselt number with internal heat generation/absorption in the presence of
a magnetic field is due to the intensification of the generated vortices, which
effectively enhances the convective heat transfer through the disk surface.

6.2. Stability analysis

In order to determine the critical conditions for the onset of the thermal
instability that correspond to the critical Grashof number Gr c, the numerical
simulations are carried out for various combinations of the control parameters,
such as Ω, Pr , Q, M and S. In all cases, the stability of the flow is examined by
plotting neutral curves in the (n,Gr) plan. Furthermore, each illustrated neutral
stability curve contains an unstable region located above the curve, and a stable
one located below it. Our discussions focus on the critical Grashof number Gr c,
which presents the critical threshold of the transition to turbulence. With suf-
ficiently accurate computations, the stability results confirm that the critical
conditions for the onset of instability are significantly affected by the presence
of a magnetic field, internal heat generation/absorption, suction/injection veloc-
ities and rotation parameters. Returning to the basics of the subject exposed in
such conditions, the results show that the effect of suction/injection is similar to
that of the magnetic field and that the basic flow becomes more stable as both
parameters increase.
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The generalized algebraic eigenvalue problem (5.2) has been solved numeri-
cally using a pseudo-spectral method based on the expansion of Laguerre’s poly-
nomials. For satisfactory convergence, the effect of the level of truncation N was
taken into account on the critical conditions for the onset of instability, which is
given by the lowest value of Gr . Convergence criteria are based on the difference
between iterative values of the critical Grashof number |Gr i+1

c −Gr ic |. When
the difference reaches 10−4, i.e. |∆Gr c | < 10−4, the solution is assumed to have
converged and the iterative process is terminated.

Figure 6 shows the effect of the number of collocation nodes N on the critical
Grashof number error. We can see that the accuracy of the numerical scheme can
be improved by increasing the number of collocation nodes. In addition, the plots
reveal that the number of required polynomials increases by increasing the Hart-
mann number M . This is in agreement with the fact that an increase in the
Hartmann number M reduces the thickness of the dynamic boundary layer;
which requires a larger number of terms in order to avoid spurious nodes and
preserve the prescribed precision.

Fig. 6. Influence of the number of collocation nodes N on the critical Grashof number error.

The sequence of neutral stability curves illustrated in Fig. 7 presents an
overview of the stability properties of the basic flow for different values of Ω, M ,
Q and S, respectively. Figure 7(a) shows that the rotation parameter Ω causes
a significant change in the flow stability, which can induce strong disturbances
even at low values of the rotation parameter. One can observe that the critical
Grashof Gr c decreases steadily with increasing Ω. In the (n,Gr) plane, the re-
sults presented so far show that Ω acts to destabilize the base flow, but it has
nevertheless enabled us to locate the region of the growth of the most unsta-
ble modes. Figure 7(b) shows the critical Grashof numbers for different values of
the Hartmann number, a regular stabilization effect is observed by increasingM ,
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(a) (b)

(c) (d)

Fig. 7. Marginal stability curves for different values of: (a) rotation parameter Ω,
(b) Hartmann number M , (c) internal heat generation/absorption Q, (d) suction/injection

parameter S.

which leads to a significant attenuation of the instability region. This means that
when the magnetic field becomes stronger, the induced Lorentz force acts to re-
tard the transition of the basic flow [22]. The evolution of the disturbances with
respect to the heat generation/absorption effect can be clarified in Fig. 7(c). The
plots indicate that the flow seems more stable in the case of the absorption effect
(Q < 0) and only when it is relatively weak, and that the heat generation (Q > 0)
constitutes a destabilizing factor compared to Q = 0. Consequently, the increase
in both parameters is followed by an amplification of the instability region.

Figure 7(d) presents the influence of the suction/injection velocities on the
critical conditions for the appearance of instability. The results show that in-
creasing the suction or injection velocity leads to a rapid increase in Gr c. The
plots show that the instability region in the (n,Gr) plan is contained in that



Stability analysis of MHD stagnation flow. . . 489

corresponding to a smaller value of suction or injection parameters. In fact, it is
showed that the stability of the basic flow increases with the rise of both suction
and injection parameters.

As shown in above figures, the transition to secondary flow with the pa-
rameters Ω, M , Q and S occurs at a critical Grashof number greater than the
critical value of classical Hiemenz flow [40]. Specifically, the region of instabil-
ity in the (n,Gr) plane, is contained in that corresponding to greater values of
both the rotation parameter Ω and internal heat generation/absorption parame-
ter Q. Furthermore, the stability region is amplified by increasing the Hartmann
number M and the suction/injection parameter (S). Figure 8 shows the critical
Grashof number versus the Prandtl number for several values of the Hartmann
number (M = 1, 3, 5 and 7). When Gr > Gr c, a regular destabilization effect is
observed if Gr increases, but this effect is reversed when Gr < Gr c as confirmed
previously in Fig. 7. The plots in Fig. 8 reveal that Gr c increases rapidly when
Pr → 0, indicating that even a slight variation in Pr generates a significant
variation in Gr c. However, the Gr c decreases rapidly when Pr → ∞, leading
to a significant expansion of the instability region. Physically, with the small
Prandtl values, thermal disturbances tend to dissipate rapidly, and the most
unstable mode remains insensitive to variations in the critical Grashof number.
In this case, a higher thermal gradient is required to destabilize the basic flow.
In addition, for the higher Prandtl numbers, small perturbations dissipate more
slightly (decrease in Gr c), making the equilibrium less stable.

Fig. 8. Variation in critical Grashof numbers Grc as function of Prandtl number Pr .

The achievement for the least stable and the most unstable branches is illus-
trated in Fig. 9(a–c), displaying the temporal growth rate ω with respect to the
wavenumber n, by varying M , Q and S. An asymptotic behavior of the critical
conditions of the onset of instability seems to be confirmed in the above obser-
vations as shown previously in Fig. 7. Note that the stable region corresponds
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(a) (b)

(c)

Fig. 9. Temporal growth rate as a function of wavenumber (n) for different values of:
(a) Hartmann number M , (b) internal heat generation/absorption Q, (c) suction/injection

parameter S.

to negative values of the temporal growth rate (ω < 0), whereas, the unstable
region corresponds to positive values (ω > 0). The above observations show that
the Hartmann number M , and the suction/injection parameter S have a signif-
icant effect on the stability of the basic flow, this means that an increase in M
and S acts to retard the transition to secondary flow, and hence to reduce the
thermal instability (stabilization effect). However, the increase in the magnitude
of the heat generation/absorption parameter Q decreases its stability.

7. Conclusions

In this work, a linear stability analysis of a mixed convection boundary layer
flow, induced by an impinging vertical descending external flow over a perme-
able heated rotating disk was realized. The eigenvalue problem governing the
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stability process has been constituted by applying the linear stability theory
which is solved numerically by means of a pseudo spectral method using La-
guerre’s polynomials. From the computations and the above discussions, the
main results of the stability analysis can be expressed at the following findings;
(i) the skin friction coefficient enhances for a larger suction/injection parame-
ter, while the Nusselt number shows an opposite behavior with the increasing
heat generation/absorption parameter. (ii) The critical Grashof number decays
by increasing the rotation parameter and the heat generation/absorption effect,
leading to the expansion of the instability region. However, the flow becomes
more stable by increasing the suction/injection effect and the Hartmann num-
ber. (iii) The Prandtl number shows similar behavior on the stability of the flow
as noted in the literature for plane and curved walls, i.e., its influence is less
significant for high values. Whereas, for a very low Prandtl number, the criti-
cal Grashof number rises very rapidly even for small variations in the Prandtl
number, indicating that the Prandtl number significantly affects the instability
threshold. (iv) A significant decrease of the temporal growth rate of the most
unstable mode and of the least stable mode with the increasing suction/injection
parameter and the Hartmann number.

As a perspective, the present work can be extended to cover the modes owing
to modes of absolute instability.
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