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THIS PAPER PRESENTS AN EFFECTIVE CONSISTENT-CONTINUUM MODEL to analyse
the behaviour of functionally graded nanocomposite (FG-NC) Mindlin plates based
on the consistent couple stress theory (CCST) and the non-classical finite element
method. A novel unified form is presented based on the Halpin—Tsai model to cap-
ture the small-scale heterogeneity, which can simultaneously consider the grading
effects of the matrix and reinforcement phases along with the dispersion distribution
through the plate thickness. To meet the C' continuity requirements of the couple
stress theory, a four-node rectangular element is adopted by using the Hermitian
approach and in the way of a sub-parametric manner. The element has 20 degrees
of freedom (DOF) at each node, which is reduced to 12 DOF in a bending mode
without stretching deformation. FG-NC plates’ bending, free vibration, and buckling
behaviour are investigated. Graphene oxide (GO), reduced graphene oxide (rGO), and
silver-reduced graphene oxide (Ag-rGO) are considered for the dispersed phase. Size-
dependent optimal values for the material and geometrical properties of the FG-NC
plate model are presented, which minimize its mass with the frequency constraint.
The effects of various parameters such as grading index, weight fraction, dispersion
pattern, filler aspect/thickness ratio, and length scale parameter are examined, and
benchmark examples are provided.
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1. Introduction

NANOCOMPOSITE (NC) PLATES ARE WIDELY USED NOWADAYS due to their high
flexibility without reducing strength, light density, high surface-area-to-volume
ratio, high fracture resistance and energy adsorption, thermal/electrical /biologi-
cal features, scratch resistance as well as excellent vibrational and fatigue be-
haviour [1-4]. A nanocomposite plate generally refers to structural elements
made of nanocomposite materials, representing composites in which the rein-
forcement phase has dimensions of about nanometres. On the other hand, the
dimensions of the size-dependent nanocomposite plate are close to the char-
acteristic length, for example, the plate thickness can be around micrometres.
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The multi-scale character plays a key role in the size-dependent behaviour of
such structural elements, while the classical (Cauchy) continuum mechanics the-
ory (C-CMT) is unable to model this feature. In this respect, a set of methods
known as generalized continuum mechanics theories (G-CMT) have incorpo-
rated size effects into the underlying formulation of C-CMT by using various ap-
proaches, which are generally divided into two categories: non-local and local [5].
The former considers a weighted integral for the relevant parameters, e.g. the
stress is considered as a weighted spatial average of the strain or a micro-scale
variable. In this way, the length scale parameter is incorporated into the un-
derlying formulation through the weight function. A limited non-locality refers
to a situation in which higher gradients of the desired parameter are defined
at each point. Such an approach is called gradient or higher-grade [6]. On the
other hand, the generalized local continuum also called the higher-order contin-
uum, is enriched by microstructure at each geometrical point. Microstructure
requires small-scale degrees of freedom Micromorphic and Micropolar theories
fall into this category and are described by nine and six additional small-scale
degrees of freedom at each point, respectively [7]. Despite the many advan-
tages of these theories, their multi-scale modelling is incompatible with the
point-by-point continuity concept of CMT. In this regard, a mono-scale ver-
sion of the Micropolar theory the so-called couple stress theory (CST) or the
Mindlin—Tiersten—Koiter couple stress theory (MTK-CST) has been developed,
which ignores the independence assumption of small-scale DOF and relates it to
the macro-scale translational DOF [8, 9]. However, ERINGEN [7]| revealed that
MTK-CST suffers from the indeterminacy of the spherical part of the couple-
stress tensor, which is due to the trace-free character of the bend-twist ten-
sor. A widely used modified version of MTK-CST called MCST was presented
by YANG et al. |10]. Emerging the symmetric part of the couple stress ten-
sor instead of its asymmetric form can be considered the main character of
MCST.

There are many works devoted to the analysis of homogeneous/inhomogeneous
structural elements based on MCST in the literature |11, 12]. HADJESFAN-
DIARI and DARGUSH [13] disclosed some notable drawbacks of M-CST. They
showed that the indeterminacy of MTK-CST still exists in MCST. On the other
hand, to reduce the number of material modulus, an additional moment equilib-
rium equation is considered, which violates Newton’s third law. In this regard,
HADJESFANDIARI and DARGUSH [13}15] revealed the antisymmetric character of
the couple-stress tensor and showed that the double-layer shear force-stresses can
model the couple-stress effect. As a result, all inconsistencies in CST and M-CST
such as the complexity of underlying formulations, indeterminacy of the spheri-
cal part of the couple-stress tensor, and ambiguity in boundary conditions will be
resolved. Hereupon, the last updated version of CST is named the consistent cou-



A SIZE-DEPENDENT FUNCTIONALLY GRADED NANOCOMPOSITE. . . 95

ple stress theory (C-CST). C-CST has been used and developed in various fields
since its emergence. Hadjesfandiari and co-workers [16H19] developed C-CST
based piezoelectricity and thermo-elasticity. VAGHEFPOUR and ARVIN |20| per-
formed a nonlinear free vibration analysis of cantilever pre-actuated piezoelectric
nano-beams by using C-CST. DENG and DARGUSH |21] presented a novel mixed
variational approach to enrich the consistent couple stress theory, which removes
the continuity requirements of the C-CST. ABBASPOUR and ARVIN [22] investi-
gated free and forced vibration as well as a thermal buckling analysis of multi-
layered piezoelectric micro-plates under consistent couple stress assumptions
PATEL et al. |23| presented a C-CST-based constitutive model for a micro-beam
under large elastic deflection. The semi-analytical singularity removal method
is used to extract the slope along the deformed neutral axis. A comparative
study with experimental results is presented, which shows a good agreement.
HADJESFANDIARI and DARGUSH [24] examined various versions of the couple
stress theory in a comparative study. They showed that the pure torsion behav-
ior of micro-diameter copper wires modelled under C-CST, unlike other versions,
completely agrees with experimental models. SOROUSH et al. [25] studied the sta-
bility analysis of nanotweezers and nanoswitches based on the consistent couple
stress theory. They developed a bilayer model using the Gurtin—-Murdoch surface
elasticity and C-CST assumptions.

The presented model shows a good agreement with its experimental counter-
part. The results revealed that the surface layer can lead to an increase in the
instability threshold. In recent years, nano-sized components have been widely
used as reinforcements in phased composites. However, as the size decreases
some issues such as aggregation, agglomeration, load transfer mechanism, and
dissolution must be controlled [26-28]. Carbon nanotube (CNT), graphene (G),
graphene platelet (GPL), graphene oxide (GO), reduced graphene oxide (rGO),
and some modified versions such as silver-reduced graphene oxide (Ag-rGO)
nano-hybrid are the most important nano-sized reinforcements. Investigations
show that the one-dimensional character of CNT and the high surface energy of
graphene (due to its strong intermolecular 7-7 interaction) cause a non-uniform
dispersion in the matrix material, which leads to agglomeration [27]. The oxidized
form of graphene, also called graphene oxide (GO), comprises oxygen-containing
functional groups (hydroxyl, carbonyl, epoxy and carboxyl) which cause better
dispersion, a larger interlayer gap of graphene oxide and more comfortable ex-
foliation |28, 29]. The reduction of oxygen-content functional groups of GO in
various manners including chemical, thermal, and electrochemical revive some
mechanical /chemical /electrical properties which is known as reduced graphene
oxide (rGO) |28-30]; rGO under an incomplete reduction can suffer many overall
defects [30]. In this context, some modifier agents such as metal nano-particles
can be employed to decorate filler (on the surface) so that act as spacers for
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maintaining the primitive structure of the filler as well as properties improver
through their features [29|. Various modifying nano-particles can be employed
such as Ferrum (Fe), Silver (Ag), Nickel (Ni), and so on. GUO et al. [29] inves-
tigated the design of highly thermally conductive Ag/rGO/polyimide nanocom-
posite. The results revealed that the thermal conductivity of nanocomposite
records the highest value when the mass ratio of rGO to Ag is 4:1 and the mass
fraction of Ag/rGO fillers is equal to 15 wt%. YANG et al. |31] examined the
influence of modified rGO on various properties of the copper matrix composite
by using silver and cerium agents. Micro-mechanics, macro-mechanics, manu-
facturing process, and optimal design are the most important areas of these
fields. Several analytical, numerical and semi-empirical plans for modelling the
heterogeneous structure of Macro/Micro/Nano phased composites are available
in the literature, which estimate the effective thermo-mechanical properties and
other desired fields |2, [32}{34]. However, there are important issues that should
be addressed including porosity, structural defects, size-dependent behaviour,
uncertainty, and functionally graded manner of the shape, size, orientation, and
mechanical properties of the dispersed phase. On the other hand, the analy-
sis of macro-mechanical behaviour is critically affected by the micromechanical
model. Hence, it seems essential to model the size-dependent and at the same
time mono-scale behaviour.

Consistent mono-scale size-dependent modelling is achieved using C-CST.
However, many complexities also arise in the underlying formulation. In this re-
spect, one of the most important topics in the CST is the continuity concept
and its numerical requirements under the finite element method In fact, CST
assumes the micro-rotational DOFs are dependent on the macro-translational
displacement field w, which leads to the existence of the second-order deriva-
tives of u in the curvature relation as a deformation measurement tool. There-
fore, to capture the weak form integrability requirements, displacement field
u must pass the C! continuity. To this end, the continuity of the field vari-
able u as well as its normal derivative du/dn along the element boundaries is
required. In fact, the weak solution must be a function of the Sobolev space
H2(Q), which in turn requires C' continuity for the ansatz since C° is not
sufficient. The most common ways to remedy this are: providing C!' contin-
uous elements (conforming) using very smooth functions, nonconforming ele-
ments such that the solution is provided in H(2) or even only L2(£2) but not
in H?(2), and reformulation of the problem (typically in the form of a sad-
dle point problem) as a mixed formulation so that higher order derivatives are
avoided [35-37]. There are several studies concerning analysing composite struc-
tural elements using various versions of CST and committed to the C! con-
tinuity in the literature. NGUYEN et al. |38] studied bending, free vibration,
and buckling analysis of MCST-based FG microplates by using the seventh-
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order quasi-3D shear deformation theory and isogeometric approach. FARZAM
and HASSANI [39] performed an isogeometric analysis of in-plane functionally
graded porous microplates. Static displacement, fundamental frequencies, and
critical buckling load were extracted by employing the hyperbolic shear defor-
mation theory and MCST assumptions. MA et al. |[40] provide an analytical
solution of the bending and free vibration of the simply supported microplate
using the modified couple stress theory. The results revealed the importance of
the small-scale effects, especially when the length-scale ratio approaches one.
ZHANG et al. [41] presented a non-classical finite element model of microplate
based on MCST. THAI et al. |42] investigated the free vibration and buckling
behaviour of GPL-based composite plates with various dispersion patterns of
filler. They showed natural frequencies and critical buckling load have a direct
relation with weight fraction values and material length scale-to-thickness ratios
while in the case of length-to-thickness ratios it is inverse. WU and Hu [43] ex-
amined the bending and free vibration of a simply supported FG microplate as
well as simply supported multi-layered graphene sheets surrounded in an elas-
tic medium based on C-CST. APOSTOLAKIS and DARGUSH [37] presented the
Ritz spline method for two and three-dimensional C-CST-based free vibration
problems.

Interestingly some modes showed a direct relationship with the character-
istic length ratio, while the rest were less affected or unaffected. WU and his
co-workers |44-46| investigated free vibration of the simply supported FG-micro-
plate/Piezoelectricmicroplate under various conditions and surrounded in an
elastic medium based on C-CST. Wu and Hsu [47] derived displacement, stress,
and frequencies of a simply-supported FG microplate. WU and Lu [48| carried
out a 3D analysis of the bending behaviour of a simply-supported FG piezo-
electric microplate under closed-circuit surface conditions by using the small-
scale Hermitian C? finite layer method. WU et al. [49] employed the penalty
function method to present a C° 8-node quadrilateral and 20-node hexahedral
elements for the C-CST problem. MAO et al. [50| presented a non-conforming
4-node element with 3-DOF per node for the C-CSTbased analysis of the or-
thotropic Kirchhoff plate. FARZAM and HASSANI [51] performed an isogeometric
analysis of the free vibration and buckling of the FG-rGO-epoxy nanocompos-
ite plate using the refined plate theory (RPT) and M-CST. As discussed ear-
lier, developing size-dependent models are essential for analysing nanocomposite
structures due to their small-scale character. There are several works in the
literature based on M-CST devoted to composite/nanocomposite plates [52].
However, C-CST provides a consistent underlying formulation that is suitable
for mono-scale modelling of homogeneous/composite structures involving only
one length scale parameter. From this point of view, modelling the bending, free
vibration and buckling behaviour of C-CST-based composite plates committed
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to C! continuity reinforced by nanofillers under the arbitrary load and bound-
ary conditions is an interesting topic. On the other hand, the gradual change
of constituent material in the phased composites/nanocomposites can lead to
higher performance of the final product. Besides, modified versions of graphene
reduce common issues in graphene-based nanocomposites, such as aggregation
and agglomeration. A review of the literature reveals that in most of the works
dedicated to functionally graded composite/nanocomposite plates, the graded
parameter is the volume fraction of the reinforcement phase, and the reinforce-
ment phase is made of graphene platelets [42]. However, gradual changes in the
shape, size, orientation, and mechanical properties of the dispersed phase as well
as the properties of the matrix material can also be considered. In this respect,
a preferred design for conventional functionally graded reinforced nanocomposite
involves the addition of gradual changes in the separate mechanical properties
of the matrix and modified graphene-based reinforcements such as GO, rGO,
Ag-rGO.

This paper presents a mono-scale size-dependent analysis of functionally
graded nanocomposite (FG-NC) Mindlin plates based on the consistent cou-
ple stress theory (CCST) and the non-classical finite element method. The
small-scale heterogeneities of FG-NC plates are homogenized in a novel uni-
fied form by using the Halpin—Tsai model. In this respect, the elasticity mod-
ulus of composite constituents as well as the distribution of dispersed phase
can be continuously changed through the plate thickness. A four-node rectan-
gular element is adopted by using the Hermitian approach and in the context
of a sub-parametric model to capture the C! continuity requirements of the
couple stress theory. The element has 20-DOF at each node, which is reduced
to 12-DOF in a bending mode without stretching deformation. The proposed
model is applied to investigate the bending, frequency analysis, and buckling
behaviour of FG-NC plates. Concerning the geometrically nonlinear character
of the buckling analysis, the von Karman nonlinearity is used to construct non-
linear kinematics. In this regard, in an explicit manner, it is shown that the
von Karman nonlinear terms disappear in curvature, twist, and bending ten-
sors. An improved family of graphene including graphene oxide (GO), reduced
graphene oxide (rGO), and silver-reduced graphene oxide (Ag-rGO) nano-hybrid
are considered to meet some critical issues such as agglomeration. The ma-
trix phase is modelled by epoxy and copper. Optimal values for the material
and geometrical properties of the FG-NC model are presented, which mini-
mize its mass with the frequency constraint. A comprehensive study is con-
ducted to disclose the effects of various parameters such as grading index, weight
fraction, dispersion patterns, filler aspect/thickness ratio, length scale parame-
ter, load type, and boundary conditions, in which some results are benchmark
values.
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2. Consistent-couple stress theory (C-CST)

The asymmetric force-stress tensor ¢ is the main distinguishing feature of
the higher-order theories, which originates from the presence of couples per unit
area [8]. From a kinematic point of view, the couple stress requires a small-
scale rotational partner, as its energy conjugate. Based on CST, the small-scale
rotational partner is related to the macro-translational DOF, which leads to
a mono-scale character. Two tools for measuring deformation in CST are the
symmetric macro-strain tensor F (in the sense of Green—Lagrange strain), as
conjugate energy of the symmetric part of the force-stress tensor, and the micro-
curvature tensor I [§]:

(2.1) E = %(Vou + (Vou)T + Vou.(VOU)T),
I'=—F x V,,

where V| is the del operator with respect to the reference coordinates and w is
the classical displacement vector. A small displacement gradient in comparison
to unity (i.e., [Vou| < 1) allows linearization in the following form:

(2.3) Exi(Vu+ (Vu)')=e V=V,
(2.4) N~ —-exV=uw,

where V is the del operator with respect to the current coordinates, € and w de-
note small symmetric macro-strain tensor and gradient of small micro-rotation
vector ¢, respectively. The small micro-rotation vector ¢ is related to the left
curl of the displacement field u (i.e., V x u/2), and hereupon, the small micro-
curvature w is called the bend-twist tensor and has a trace-free character (i.e.,
wii = ¢;; = 0). The asymmetric tensor w can be expressed as the sum of
two parts, the symmetric tensor x and the skew-symmetric tensor k. The for-
mer refers to a twist whereas the latter refers to a bending deformation [13].
MTK-CST uses the asymmetric form of the curvature tensor, while M-CST uses
the symmetric one. However, in C-CST the couple stress tensor p and its energy
conjugate are antisymmetric. In this way, a couple stress effect can be described
as double-layer shear force-stresses [15]. This leads to the elimination of common
inconsistencies in the MTK-CST and M-CST [13-15]. Therefore, deformation
measurement tools in linear C-CST include the symmetric macro-strain tensor
and the antisymmetric mean curvature tensor (see Fig. 1). The mean curvature
tensor can be expressed in the form of a true vector [13]:

(2.5) k=1Vx(Vxu),

the component form of the mean curvature vector (2.5) in the orthogonal Carte-
sian coordinate system can be written as %eimlejkl#&jei, where e, and e;
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Fig. 1. Comparison of C-CMT and CST tools for deformation measuring, and interpretation
of mean curvature components via infinitesimal element.

denote the permutation symbol and basis vectors, respectively The CCST-based
elastic energy can be written in terms of the symmetric part of the force-stress
tensor g, the macro-strain tensore, the couple-stress vector p and the mean
curvature vector k:

1
(2.6) U:2/Js:6dV—/,u.k‘dV.
1% 1%

The couple-stress vector u is dual to the antisymmetric couple-stress tensor
Mij = e€ijiik- The constitutive relations for linear elastic isotropic centrosym-
metric materials under the C-CST approach can be defined as follows [13]:

os = Mr(e)l + 2jie,

2.7
@1) p = —8nk,

where ¢r(-) and I denote the trace of the enclosed tensor and the identity matrix,
respectively. A and [i are the Lame constants; n = fit? is a couple stress elastic
factor; ¢ is a length scale parameter that represents microstructure effects. The
elastic energy comparable to M-CST can be obtained by scaling n — n/4 or
v — /2 |13, |14, |43].

3. CCSTbased FG-NC Mindlin plate model

Consider a rectangular FG-NC plate under arbitrary loads and boundary
conditions made of isotropic elastic material in the Cartesian coordinate sys-
tem (x,y, z) as shown in Fig. 2a. The plate’s length, width, and thickness are
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Fia. 2. a) Geometry and degrees of freedom of FG-NC plate; b) unified form of grading and

dispersion patterns.

denoted by a, b and h, respectively. The displacement field u based on the
Mindlin plate theory can be defined as [53]:

uﬂ?(wayvzat) (aj Y, )_29 (l‘ Y, )7
(31) uy(x,y,z,t) (:I" Y, )_ 20 (il? Y, )7
uZ($7yvzat) :w(m,y,t),

u,v, and w are the middle plane displacements of the plate. 6, and 60, are the
rotations of the transverse normal to the middle plane with respect to axes
y and x, respectively. The present work obeys the linear discipline. However,
to capture geometrical nonlinear sense for the buckling analysis, von Karman
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nonlinearity assumptions are used. Hence, it is necessary to show the effect of
these assumptions on the curvature tensor as well as the strain tensor.

3.1. CSThbhased von Karman strain and curvature tensors and linearization

Concerning Eqs. (2.1) and (3.1), the small change in a plate element shape
allows the omission of high-order terms (i.e., (Ou/dz)(du/dx), (Ou/0x)(du/dy), .. .).
However, when the rotation of the transverse normal is moderate (i.e., 10°-15°
in a macro-scale vision [53]), terms (Ow/0z), (Ow/0z), (Ow/dy)(0w/dy), and
(Ow/0z)(0w/dy) are small enough to keep strain small, but yet large so that
cannot be ignored. In this sense the von Karman strains related to the displace-
ment field (3.1) can be constructed from Eq. (2.1):

5x:@_z%+5fvvll’ gy:@—z%—l—sé\q’, 57;:0,

(3.2) ox ox oy y

Do o o0y 0w, ow
%y_ay Ox oy gr | ey Ye2 T Gy Ve %’Z_ay v

superscript NL stands for nonlinear terms. The nonlinear strain terms can be
expressed in the vector form as:

2 2 T
NL NL NIL NIiT 1|[0w ow ow Ow
B3 e e =5 [(f%) <6y> Oz dy |

concerning Eq. (3.2), when the deflection to the plate thickness ratio is small (say
w/h < 0.2 in a macro-scale vision), the nonlinear vector eV can be neglected.

In this respect, inplane strains €, and transverse shear strains €5 are obtained
corresponding to Eq. (2.3) as:

(3.4) &b = ez &y %y]T =) — z¢},
B T |[Ow ow T
(3.5) €s = ['sz ’sz] = |:ay - ey or 03::| )

_ [00. 99, 90, b, T

ou v v ou]’ 1 90, 08, 00, 06y
’ b7 9z oy oxr ' Oy

3.6 =0 — —+—
(36) b Or Oy Ox Oy
Next, the mean curvature vector k is determined. To this end, the curvature
tensor I' can be expanded using an arbitrary strain tensor €, which meets von
Karman assumptions. In this regard, by using Eq. (2.2), and inducing the lin-
earization concepts of Eq. (2.4), the component form of the curvature tensor is

obtained in the orthogonal Cartesian coordinate system as follows:
~ 8@}-]-

(3.7) I'=ejpr . e ® e,
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or
By 0w o 0 02 . 08 02,
[y =— ’ Fy == s z = = s
0z dy Ox 0z y Ox
Y CO 02, 0, - T
38) [, — =% _ po_ 98y 05 o 0%
(38) Y02 ox v 0z + oy oy + ox ’
GOy e o DR, 05, o De. 05
= 9z oy’ Y oy oxr’ Y 0z ox’

by using the von Karman strain (3.2) in Eq. (3.8), the micro-curvature tensor w
and its symmetric and antisymmetric parts, that is, the twist tensor x and the
mean curvature tensor k, are obtained as follows:

(o, w1 o o,
Yo =5\ oz 0xdy )’ YT oyoxr 0Oy )’

1/06, 06,
w, =55 — =2,
2\ Oy Ox
1/ 00, O*w 1/06, O*w
(39) Wey = 2<—a$ — 61'2>7 Wy = 5 (ay + ayz), Wyy = O, Wey = O,
1 8721)_ 0%u N 020, B 0%0,
Waz = 9\ 92 Oxdy Z@x@y “or2 )
LU Pu P 20 0,
Wyz T g oy?  Oxz0y : oy? Zaxay ’
(o, w1 0w o,
Xe =9\ B 0xdy )’ Xy =9 oyor 0Oy )’
ifon o,
X275 oy Ox )’

1/ 00, o*w 00, J*w
(3.10) Xxy:Xyz:Zl(—ax—axQ 33/+ag/2>’
1/0% 0%u %0, 820y
Xez = Xew = 4(8:1:2  dzdy * Z@xay T )’
1 u v 86, 0%,
Xyz = Xay = (_y2 + Oxdy +z o2 26w8y>;

100, Pw 99, Pw
=3 ,
o2 u %0, 0%,
—5 — +z -z )
0x2  0z0y Oxdy Ox?
< 0%u 9% %0, 820y )

(3.11) Ky = —kop =

o2 + 0x0y tz o2 Z@x@y
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Equations (3.9) to (3.11) are linearized. In fact, it is assumed that the changes of
(%)2, (%—Z)Q, and (%—Z’) (%—Z) with respect to x and y are insignificant, as a result,
the terms —20e " /0y + 02} /0x and —0 )1 /Oy + 20" /Ox are insignificant
and therefore ignored. From this point of view, the strain is small, the rotation
of the transverse normal is moderate, and the micro-curvature tensor [ =w
(and also its symmetric and antisymmetric parts, that is, the twist tensor x and
the mean curvature tensor k) is assumed to be small. It should be noted that
available works in the literature have directly used the linear form of curvature
without considering the mentioned linearization [54-56|. Equations (3.7)—(3.11)
are issued in the orthogonal Cartesian coordinate system, however, the above-
mentioned point can be easily achieved in the cylindrical coordinate system or
other form of the orthogonal curvilinear coordinate system. Using Eq. (2.5), or
alternatively Eq. (3.11) and considering k; = 1/2e;;,k;j), the mean curvature
vector is obtained as:

1 /0% 9%v 829y %0,
ky=—| 55— +z —z )
4\ 0y? Odzxdy ~Ozxdy oy?
L P 0, 0%,
4\ 0z2 0Ox0y Oxdy ox? )’
L — 1 (0210 00, *w 80y>
z _Z a |

(3.12) ky =

222 T oz T o2 oy

which can be expressed as follows:

2 2
(3.13) kb:kzzl<8w 90, 0w 6%)7

\o2 T or Tar ey

kg ky]" = kO + 2k,
o I[(Pu G\ (v P

(3.14) S 4\oy?2  0xdy oxr?  Jzxdy ’
L[ (%0 2%, 0%, 90, \1"
S 4\ 0y2  Oz0y or?  0zdy '

As mentioned in the previous section, the bending deformation of the in-
finitesimal element is associated with the imposed micro-rotation ¢, which is
considered by the mean curvature tensor/vector under C-CST assumptions. In
this respect, ellipsoidal cap-like deformation of surface elements is guaranteed
(a positive Gaussian curvature), while this is not the case under twist tensor
and MCST. As shown in Fig. 1, k;, k,, and k., represent the mean curvature

of planes parallel to the yz, xz, and zy planes, respectively. The mean curvature
kp is a constant value through the plate thickness, while kg changes linearly.

™
»
I
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The small deformation assumptions require the components of the macro-strain
tensor and the mean curvature vector to be infinitesimal (i.e., |e;;| < 1 and
ki| < 1) [13]. The geometrical nonlinearity of plates can be treated in two
ways, large-deflections and stability problems. In the aforementioned formula-
tions, a general nonlinear expression was used to reveal that the von Karman
nonlinear strain terms vanish in the curvature tensor. In the following, geomet-
rical nonlinearity is retained for a buckling analysis. Concerning a linear elastic
isotropic material enriched by couple stress effect, Eq. (2.6) reveals that the sym-
metric force-stress tensor is the energy conjugate of the symmetric macro-strain
tensor, while the couple-stress vector is the energy conjugate of the true mean
curvature vector. Therefore, the constitutive equations can be made of Egs. (2.7),

(3.4), and (3.5) as:

Op = [Ux Oy T:cy]T = nglh

3.15
( ) Os = [Tyz T:L‘z]T = QSES)
19 0
E
(3.16) Q=-—Vo1 0|, @=c|'Y
1—192 1—9 01
005~

where G is the shear modulus. The couple-stress vector i can also be expressed
as follows:

o = fz = —Qrpks,

3.17

( ) ths = [He ,Uy]T = —Qusks,

(3.18) Qu=sn Q=7 0]
’ s 0 8y .

3.2. A novel unified form for homogenization of FG-INC plate

In conventional functionally graded materials, composite properties including
the modulus of elasticity, change continuously in predefined directions and are
defined as a function of the primary values (see Fig. 2b) [57]. On the other hand,
a conventional phased composite/nanocomposite usually includes one or more
reinforcement parts that are surrounded by a continuous phase. As shown in
Fig. 2b, the mechanical properties of phased composite are defined as a function
of the separate properties of the matrix and reinforcement [58-60]. The gradual
change of constituent material in the phased composites can lead to higher per-
formance of the final product [58]. A review of the literature reveals that in most
of the works dedicated to functionally graded composite/nanocomposite plates,
the graded parameter is the volume fraction of the reinforcement phase [42].
However, gradual changes in the shape, size, orientation, and mechanical prop-
erties of the dispersed phase as well as the properties of the matrix material can
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also be considered. From this point of view, using the Halpin—Tsai model [58-H60]
and a special grading function [57], a unified form will be constructed for the
graphene-based functionally graded nanocomposite plate. A generic form of func-
tionally graded pattern is as follows [57]:

(3.19) P(z) = poV(2),

where P denotes material properties such as Young’s modulus E and mass den-
sity p. Py is an initial value at the origin surface. V' can be written as [57]:

(3.20) Vm(z):<1+ﬁm<;j:2>>nm, w@):(u&(iiz»m,

grading index 8 can be obtained as follows:

(3.21) Bm = "X/ Pm(h/2)/Pmo—1,  Br= "/Pr(h/2)/Pro—1

subscripts m and r denote dependence on matrix and reinforcement, respectively.
n., and n,. represent a predefined integer related to the matrix and reinforcement,
respectively. Other FG forms include an exponential grading pattern that can
be used [57]. Consider useful ratios as follows:

V. (Z) Eyro _ Pro

3.22 ay(z) = , = , Q= .
( ) V( ) Vm(z) EmO g PmO0

Under Halpin and Tsai assumptions [58-60], the phased composite modulus
is defined as a function of the matrix and reinforcement modulus along with

the geometrical parameters of the dispersed phase, i.e., 1% = %, where
n = p; 1/ If’—; + £V, and € are volume fraction and geometry parameter of

reinforcement, respectively. In this respect, utilizing the Halpin—Tsai model, the
ratio of in-plane modulus of the FG-NC reinforced by rectangular surface filler
can be written in a unified form as follows:

(3.23) Eyz) _ ap(z)aw(z) + (Z)QLW(Z)‘:/ (2) — a?(2)&LV2(2)
. E | (z) ar(z)aw (z) + a(z)awrn(2)Ve(z) — 042('2)51”‘/;2(2)’
(g20y D13 _ar(a) + pa)Ve

En(z)  ap(z)—a(2)V, '

where F|| and E| are longitudinal and transverse Young’s modulus, respectively.
&r = 2L /3t and &, = 2W/3t are the filler geometric parameters. L, W and ¢ are
the length, width, and thickness of rectangular fillers. Alternatively, one can use
geometrical parameters in the form of £, = 2((L+ W)/2/t) and &, = 2 |59, 61].
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The pertinent parameters are defined as:

arw(z) = aw(2)éL —ar(z),  awr(z) = ar(z)éw — aw(2),
alz) =apay(z) =1, ap(z) =agay(z) + &1,
(3.25) aw (z) = agay(z) + {w,
— AT
At apar(2)(1— Ay
where A, denotes the filler weight fraction. The Young modulus of the FG-NC
plate is given by:

(3.26) Erandom(z) = alEH(z) + azEJ_(Z),

|12

which reduces to the conventional FG plate by assuming A, = 0. Coefficients aq
and ag are 3/8 and 5/8 for the rectangular-surface filler. Also, these coefficients
are given as 0.49 and 0.51 in [62] for the nonrectangular-surface GO. In this
respect, geometrical parameters are £, = &, = 2d/t, where, d and t denote the
average diameter and thickness of fillers. For the unidirectional (longitudinal)
arranged filler Erandom(2) = E)(z). Similar grading of the filler and the matrix
through the plate thickness (i.e., n,, = n, and B,, = () results in ay = 1,
which gives:

(3.27) Erandom(z) = (a1E|| + GQEJ_)Vm(Z).

The unified form can be reduced to the homogeneous model (A, =0, §,, = 0,
Vin(z) = 1), conventional functionally graded model (A, = 0), conventional re-
inforced nanocomposite (B, = B, = 0, Vo(2) =V, (2) = Vy(z) = 1), and con-
ventional functionally graded reinforced nanocomposite (8, = fr =0, Vp(2) =
Vr(z) = 1). The mass density and Poisson’s ratio of FG-NC plate are given by
the rule of mixture as:

(3.28) p(2) = (pr(2) = pm(2))Ve(2) + pm(2),

v(2) = (vr(2) = vm(2))Ve(2) + vim(2),

v and vy, are Poisson’s ratio of the filler and the matrix, respectively. Dispersion
patterns in the thickness direction are considered as:

(3.29) V() =, (UD),
(3.30) V(2) = 2&‘4(" ‘,f'z) (D),
(3.31) ABE AL (XD),

(3:32) Ti(z) = Vr(“ 22) (VD).
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3.3. Weak form equations of Mindlin FG-NC plates

By using Eqgs. (3.15) and (3.17), the CCST-based elastic energy (2.6) can be
rewritten as:

1
(3.33) U= 5 / el Quey dv+g / elQqes dV+ / kL Quyky, dV + / kT Qrsks dV,
Vv Vv Vv Vv

where « is the shear correction factor, and can be taken as 5/6. Utilizing Eqs.
(3.4), (3.5), (3.13), and (3.33), the first variation of U takes the following form:

(3.34) OU = /(558T [/ Qs dz] €Y — 552T [/ 2Qy dz} £p — (55;T {/ 2Qy dz] )
Q z z z
+55;T[/ 20, dz:| el dQ+/5sST U KQs dz] £, dO
z Q z
+2/5kaUkadz]kbdQ+2/ (51{2T{/kad4k2
Q z Q z

+ k0" [/ 2Qks dz} kL 4 okl [/ 2Qks dz:| 0

z z

+okLT [/ 2201 dz} k;> a9,

where €2 denotes the middle plane of the plate. The variational form of the kinetic
energy of the FG-NC plate is defined as:

(3.35) 0T = ! <5w { / pdz]w—l—ééx [ / pz? dz] 0, + 06, { / pz? dz] e'y) dQ
—I-Q/<5u[z/pdz}u+57}[z/pdz}1}> dQ
—29/<5u[z/pzdz]e‘x+51>L/pzdz]e'y> dQ,

the superposed dot denotes derivative with respect to time. To capture the ge-
ometrical nonlinearity of the elastic buckling, by using von Karman nonlinear
strains (3.3), the potential of in-plane edge forces N° = [N? Ng Ngy]T are ex-
pressed as follows:

(3.36) Y= /NOTeNL dQ,
Q
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the first variation gives:

0w . 0w Odw 0w  Jdw ow  ddw ow
. oY = N0 N N0 T TN ) a0
(3.37) oV /(Om $8$+8y y8y+8x ry8y+8y my@a:) ’
Q

the Hamilton principle in a weak form sense gives:

(3.38) / (68f Dyp + 0l Dyes + 6k Dypky + 0kI Dysks) d2 = A,
Q
where &, = [} €}]7, ks = [k k1]T. Moreover, the relevant parameters are as
follows:
DO DOl h/2
Dy = gl bl ) (DgaDI?laDl}) = / (17 —Z,ZQ)deZ,
Db Db
—h/2
h/2 h/2
(3.39) D, = / kQsdz, Dyp=2 / Qrp dz,
—h)2 —h)2
DO DOl h/2
Dis= | o1 o1 |+ (DRs Dis, Diy) =2 / (1,2, 2) Qs d2,
Dks Dks “hy2

A for bending, free vibration, and buckling analysis of the plate defined as fol-
lows, respectively:

(3.40) Ape = / pow dS + / f.owdl — / g0y dT — / 7y 08, dT,
S S S
(3.41) Ap, = / ou’ M dS,
Q
(3.42) Apy = / [(Vow! NVw] dQ,
Q
where 4 = [u® u!], u® = [uv], u! = [w 0, 0,]. Moreover, the pertinent parameters
defined as:
0 mog 0 0 h2
(343) M = [ﬂ[l)o Ml]’ MY=10 me O |, (mg,me)= / p(1,2%)dz,
o o T NO NO
44 = |5 = N=| & %
A R
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a parameter p denotes the density of the plate; s is the boundary of €. The
parameter p is the transverse pressure; t, is force per unit length acting on the
natural boundary s. m; and m, are the applied moments per unit length about
axes y and x acting on the boundary s; N is the in-plane edge forces matrix.

4. Size-dependent finite element discretization

In this section, a size-dependent finite element based on C-CST is constructed
for the FG-NC Mindlin plate theory. An important issue in the analysis of 2D
problems based on the finite element method is that the weak solution must
be a function of the Sobolev space H2(Q2), which in turn requires C! continuity
for the ansatz since C° is not sufficient. CST requires C' continuity to ensure
the integrability of the weak form. This is due to the existence of the second
order derivatives of the translational displacements field in the curvature terms.
C! continuity of primary variables guarantees that the secondary variables are
piecewise continuous |63]. From this point of view, a very smooth function that
guarantees a C! continuous element can be used. Hermitian elements are of in-
terest due to their ability to provide C! interelement continuity. The degrees of
freedom in Hermitian elements consist of the field variable and its derivatives.
In this regard, the generalized displacements in a generic form can be indepen-
dently interpolated using field functions and pertinent derivatives in the sense
of Bognere-Foxe—Schmit (BFS) [64] as follows:

4 A A A
R R oP oP 0’P
w0 P=3|MReNe(G7) + 3 (5) () |

i=1

where P denotes generalized displacements u, v, w, 6., and 6,. This expression
leads to 20-DOF per node (80-DOF 4-node element) which is reduced to 12-
DOF per node in the case of bending modelling without stretching. P can be
approximated by using the third order polynomial aj +asz+- - - +a16x°y". P and
its partial derivatives construct a system of equations as:

(4.2) d = Aa,

vyhere Ad = [Ply Py, P3, Py, P,:cl, P,x27 P,m37 Ra:47 P,yh P,y2a 1D,y37 P,y4; Rzyh P,zy27
P y3, Pryal, aj is the coefficient vector (j = 1,...,12), A is the matrix of coef-
ficients, as a node location function in terms of natural coordinate (£7). On the
other hand, since C! continuity is difficult to satisfy, many works in the litera-
ture use elements that provide slope continuity only at the nodes and not along
the element boundaries, which leads to the production of a nonconforming ele-

ment. A non-conforming approximation in the sense of Adinie-Cloughe-Melosh
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(ACM) [65] can be obtained by dropping partial derivatives 9% /0x0y, x2y?, 2332,
2?93, and x3y3 terms, which produce 15-DOF at each node in the general case,
and 9-DOF per node in bending form without stretching. Substituting a = A~
in the mentioned third order form P and by extracting all multiplied terms in ch,
give:

~

Ni = %(5 + 51)2(50 —-2)(n+ 772-)2(770 -2),
iz = %afi(é + 51’)2(1 —&)(n + 772‘)2(770 —2),
iy = S5t + 60716~ 2)(1-+ (1 =),

Niay = sabéom(€ +€)*(1 — &0)(n -+ (1 — o),

where N;, Nz, Niy and Ny, identify shape functions, &y = &&, no = nm; (1 =
1,2,3,4), a and b are the half-length of the plate element. The finite element
approximation of generalized displacements can be constructed in the matrix

N;

g8
|

(4.3)

<
|

form as:
w ) Y )
(4.4) U=1|6,| =Nd°, U= [v] = Nd*,
Oy
where

— o, o) 80\ (90y\ (O 80\ (99 92 820, \ (9%0y\ 17T
d? - [wl 9»7»’2 eyi (871:)7,( Ox )z(ﬁ)z(%)z(@iy)z(T;)z(azggj;)z(dxay)z (dcc(??;;)z] )
d® collects all the degrees of freedom of the generic element in the vector form,
the superscript e denotes dependency on the element,
df = [ui Vi iz Vi Uiy Viy Uisy Viay]'

Moreover, ]5/' = []\7_1 ...N,] and N = [N;...N,] are the matrix of the shape
functions. N; and N; are expressed as follows:

~ [NiO ONyz 0 0 Ny 0 0 Ny 0 0
(4.5) Ny=| 0N 0O 0 Ny 0 0 Ny 0 0 Nigy O |,
00N, O O Ny O 0 Nyy 0 0 Nigy
(46) N, _ [N 0 Niw 0 Nig 0 Nigyy 0

“LO0ON 0 Ny 0 Njy 0 Nigy |

It should be noted that, under a sub-parametric manner, geometry mapping is
performed by using a conventional Lagrangian interpolation scheme.

The strain vectors can be expressed based on pertinent differentiation of the
shape functions (N and N) along with the nodal displacements (d¢ and d¢) in
the following form:
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(4.7) e) = BYd®, ¢ = Bld®, &5 = Byd",
(4.8) ky = Bpd®, kY= Bl.d°, k! = Bj.d°

Utilizing Eqgs. (4.4), (4.7), and (4.8), Egs. (3.34), (3.35), and (3.37) can be written
as:

(4.9)  6U = / (6d°" BY" DVBYd* + 6d°" B} DY BYd*
Q

+6d°" BY" DN BLae + 5d°T BL D} BLd®) dQ
+ / 6d°T BT D,B,d® d) + / 6d°T BY Dy Bipd® dS2
Q Q
+ / (6" BY," DY BY.d° + 5d°" B}, DV BY d¢
ks ks“ks ks ksks

Q
+6d°" BY." DN B! d° + 54T BL," DL BL.d%) d9,

(4.10) 6T = w?e™? / SdTNT M Nd® dQ + w?e™! / 5d°" NTmoNd® dQ,
Q Q
(4.11) 6V = / sd TNV VTNV NW ae dq,
Q

where w is the natural frequency of a harmonic motion.
In this respect, the global equilibrium equations for bending, free vibration,
and buckling can be respectively expressed as follows:

(4.12) kd = F,
(4.13) (k —w?M)d = 0,
(4.14) (k = Aerkg)d = 0,

where ). denotes the load factor, d = [d® d°]T. The global stiffness matrix k,
mass matrix M, force vector F, and geometrical stiffness matrix k4 can be written

as follows:
k k
(4.15) - [%T k]
| f
i -
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(4.17) M= []0\41\94]
(4.18) ky = ["63 8}

Equation (4.15) shows that the total stiffness matrix is affected by two main
parts, the stiffness matrices representing the macro-translational degrees of free-
dom (kyp, ks) and the stiffness matrices representing the micro-rotational degrees
of freedom (kgp, krs). This shows that adding the micro degree of freedom leads
to an increase in global stiffness, reduces deflection and increases the frequency
and critical load. Equation (4.14) can be expressed as k — A,-] = 0, where

k= (k‘;)_ll;:, I denotes the identity matrix. The lowest eigenvalue, at which
bifurcation arises, can be reached by an iterative eigenvalue algorithm. To im-
plement the presented method a computer code has been written in MATLAB
environment. A system of Egs. (4.12)—(4.14) using Eqgs. (4.15)—(4.18) provides
a decoupled form for in-plane and out-of-plane displacements as well as rota-
tions. In this sense, w6, and 6, can be independently determined based on

certain initial and boundary conditions.

5. Size-dependent optimization of FG-NNC plate model

The small-scale behaviour of the FG-NC plate is strongly dependent on the
length scale parameter-to-thickness ratio A; = ¢/h. Therefore, to have optimal
behaviour of the plate, it seems necessary to adjust the parameters of the FG-NC
plate such as the weight fraction of dispersed phase A,, grading index (3, and
length /width-to-thickness ratio n, against A;. In this respect, an optimization
problem for minimizing plate weight can be defined as follows:

3
Minimize mass(A;, Ay, 5,n4) = pn?L(AL) ,
l

subject to 1 — R, <0,
(5.1) 0.01 <A; <1,

0.001 < A, <0.02,

01<p5<2,

5 < nge <100,

where R, = w; /w{, w1 denotes the first frequency of the plate, w{ stands for the
predefined lower bound of wy, which will be adopted by the designer. To solve the
optimization problem, a computer code is written in the MATLAB environment
based on a nonlinear program solver.



114 M. Z. ROSHANBAKHSH, S. M. TAVAKKOLI

6. Numerical examples and discussion

In this section, numerical results are provided by the presented method for
bending, frequency, and buckling analysis of FG-NC plates. The length scale
parameter ¢ is assumed to be equal to 17.6 pm [66], also n, = ny,, Br = fm
unless otherwise clearly expressed. As mentioned earlier, the C-CST elastic en-
ergy comparable to M-CST can be obtained by scaling n — n/4 or ¢ — ¢/2.
The properties of G are assumed E,. = 1010 GPa, p, = 1060kg/m?, v, = 0.186
[28, |51, 67], for GO E, = 290GPa, p, = 3600kg/m?3, v, = 0.179 (for the
degree of oxidation 0.06) |28, 67H69| for rGO under thermal reduction E, =
150 GPa, p, = 2250kg/m3, v, = 0.165 [28, [51, [67], and for Ag/rGO with
Eay =76 GPa, pag = 1049kg/m3, vp, = 0.37 [70] properties are E, = 147 GPa,
pr = 2225kg/m3, v, = 0.169. In addition, for the polymer matrix E,, = 3 GPa,
pm = 1200kg/m3, v, = 0.34 [51, 70|, for the CU matrix E,, = 124 GPa,
pm = 8960 kg/m?, v, = 0.34 |70]. The geometrical properties of graphene-based
fillers can vary depending on the chemical composition and number of layers. In
this respect, the length/width (L/W) of the fillers are considered in the range
of 1 to 5pum, and thicknesses are in the range of 1 to 5nm |27, 28|. Various
combinations of boundary conditions of simply (S), clumped (C), and free (F)
support including SSSS, CCCC, SCSC, and CCCF are considered. Simply and
clumped edge conditions are as follows:

Simply Supported Edge (S):

v=w=0,=0 atz=0,aq,
u=w=460,=0 aty=20,b.

Clamped Edge (C):

=w=wy=0,=0,=0,,=0,,=0 atx=0,aqa,

=v=w=w,;=0,=0,=0,,=0,,=0 aty=0,0b.

6.1. Convergence study

Consider a homogeneous C-CST-based plate. Non-dimensional central de-
flections of the simply supported square plate under the sinusoidal load p =
posin(mz/a) sin(ry/b) and non-dimensional natural frequencies are tabulated in
Table 1 for various material length scale parameter to thickness ratio ¢/h and
length to thickness ratio a/h = 10. Material properties are E,, = 380 GPa,
pm = 3800kg/m3, v,,, = 0.3. Different meshes are captured to verify the con-
vergence of the present method. As the results show, proper convergence can be
achieved by employing 30 x 30 mesh, so that the difference in results with 40 x 40
mesh is about 0.1% or less in most cases. Therefore, a 30 x 30 mesh is used in
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TABLE 1. Convergence of non-dimensional central deflection @ = 10w (%, 2,0) E\h® /poa®
and non-dimensional frequency @ = w(a?/h)~/pm/Em of the plate, 8 =0, A, = 0,
v = 8.8 um, a = b= 10h, SSSS.

Mesh
4x4 8x8 | 12x12 |16 x 16 | 20 x 20 | 30 x 30 | 40 x 40
0.1 | 0.2127 | 0.2438 | 0.2494 | 0.2513 | 0.2521 | 0.2529 | 0.2532
0.2 | 0.1411 | 0.1679 | 0.1733 | 0.1752 | 0.1760 | 0.1768 | 0.1771
w 0.3 | 0.0921 | 0.1116 | 0.1157 | 0.1171 | 0.1178 | 0.1185 | 0.1187
0.4 | 0.0630 | 0.0766 | 0.0797 | 0.0807 | 0.0812 | 0.0817 | 0.0819
0.5 | 0.0459 | 0.0552 | 0.0574 | 0.0582 | 0.0586 | 0.0590 | 0.0591
0.1 ] 5.7426 | 6.1062 | 6.1730 | 6.1983 | 6.2108 | 6.2240 | 6.2289
0.2 | 7.0719 | 7.3675 | 7.4108 | 7.4281 | 7.4368 | 7.4462 | 7.4496
w 0.3 | 8.7208 | 9.0442 | 9.0742 | 9.0866 | 9.0930 | 9.0998 | 9.1021
0.4 | 10.4533 | 10.9173 | 10.9415 | 10.9513 | 10.9562 | 10.9612 | 10.9625
0.5 | 12.1187 | 12.8660 | 12.8899 | 12.8987 | 12.9028 | 12.9067 | 12.9072

Parameter | ¢/h

the following problems. In addition, in-plane displacements u and v are ignored
in the following for convenience. As a result, the 48-DOF element is considered.

6.2. Static analysis

Table 2 gives results for the non-dimensional central deflection of the ho-
mogeneous square plate under a sinusoidal load for various length-to-thickness
ratios a/h and material length scale parameter-to-thickness ratio ¢/h. Material
properties are E,,, = 380 GPa, p,, = 3800kg/m3, v,,, = 0.3.

The results show that the non-dimensional central deflection

W= 1OwEmh3/q0a4

under the sinusoidal load has an inverse relation with the length-to-thickness
ratio and the material length scale parameter-to-thickness, so non-dimensional
deflection decreases with the increase of these two ratios. A comparison of the
presented results with the other works including M-CST/C-CST based classi-
cal plate theory (CPT), the first-order shear deformation plate theory (FSDT),
refined shear deformation plate theory (RSDT), and analytical/numerical 3D
solutions shows a good agreement between data, especially with 3D C-CST, and
when the length-to-thickness ratio increases. However, by increasing the material
length scale parameter-to-thickness ratio and for the small length-to-thickness
ratio (i.e., thicker plate), the difference between the 3D results and the plate the-
ory data increases. As can be seen in Table 2, the presented element concerning
the shear-locking phenomenon can provide accurate results for any length-to-
thickness ratio without any need for reduced integration. This means that the
full integration (e.g., 2 x 2 Gauss points) can be used in all cases.
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TABLE 2. Non-dimensional central deflection w = IOw(%, g, O) Enh3/qoa* of the plate,

B=0,A =0,.=88um, a =>b, SSSS.

a/h Theories 1/h
0 0.1 0.25 0.4 0.5

M-CST CPT |71] 0.2803 | 0.2399 - 0.0760 | 0.0539
M-CST RSDT |72] | 0.3433 | 0.2875 - 0.0838 | 0.0588
5 M-CST 3D |73] 0.3357 | 0.2851 - 0.0953 | 0.0709
CCST 3D |47| 0.3357 | 0.2851 - 0.0953 | 0.0709
Present 0.3411 | 0.2926 | 0.1690 | 0.0994 | 0.0746
M-CST RSDT |72] | 0.2961 | 0.2520 - 0.0780 | 0.0552
M-CST 3D |73] 0.2942 | 0.2514 - 0.0810 | 0.0583
C-CST CPT |43| 0.2803 | 0.2310 | 0.1367 - 0.0539
10 "CZCST FSDT [43] | 0.2961 | 0.2535 | 0.1454 | — | 0.0594
C-CST RSDT [43] | 0.2961 | 0.2520 | 0.1415 - 0.0551
C-CST 3D [47] 0.2942 | 0.2514 - 0.0810 | 0.0583
Present 0.2945 | 0.2529 | 0.1446 | 0.0817 | 0.0590
M-CST CPT |71] 0.2803 | 0.2399 - 0.0760 | 0.0539
M-CST RSDT [72] | 0.2842 | 0.2430 - 0.0765 | 0.0542
20 [ M-CST 3D |73 0.2838 | 0.2428 - 0.0773 | 0.0550
CCST 3D |47| 0.2838 | 0.2428 - 0.0773 | 0.0550
Present 0.2828 | 0.2428 | 0.1383 | 0.0772 | 0.0550
M-CST CPT |71] 0.2803 | 0.2399 - 0.0760 | 0.0539
100 | M-CST RSDT |72] | 0.2804 | 0.2401 - 0.0760 | 0.0539
Present 0.2791 | 0.2396 | 0.1363 | 0.0757 | 0.0537

The effects of dispersion patterns on the static behaviour of rGO-Epoxy
FG-NC plate with A, = 1%, L, = W, = 1um, ¢, = 1nm under concen-
trated force pg = 0.1N at the centre are investigated in Table 3. Various non-
homogeneity parameters (3, width-to-length ratio b/a, length-to-thickness ra-
tio a/h, and boundary conditions are considered. The central deflections w are
provided for ¢/h = 0.5, n = 2. The obtained results show that the central de-
flection @ = w/h of the plate has a direct relation with the length-to-thickness
ratio a/h as well as the width-to-length ratio b/a, and an inverse relation with
the grading index (. In the non-dimensional form of deflection in Tables 1 and 2,
the relation between deflection and ¢/h is inverse, while this relation is direct in
Table 3. This is due to the thickness parameter h decreasing with the increase of
t/h when the material length scale parameter ¢ is considered a constant value.
In fact, the thickness parameter h is in the numerator in Tables 1 and 2, while
there is h in the denominator in Table 3. Interestingly, the presence of a dis-
persed phase leads to a significant decrease in the deflection. In this respect, by
adding only 1% of rGO, the deflection will decrease by 20% and 22% for 8 = 0
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TaBLE 3. Central deflection @ = w(

a

L, =W, =1um, t, = 1nm, : = 88um, ¢/h = 0.5.

B.C. Dispersion b/a a/h =10 a/h =100
pattern B=0 |p=05|8=1 |B=0 6=05|8=1
0.5 | 0.1420 | 0.0896 | 0.0607 | 9.5895 | 6.0439 | 4.0867
Pure Epoxy | 1 | 0.3242 | 0.2044 | 0.1384 | 26.8009 | 16.8914 | 11.4209
1.5 | 0.4125 | 0.2601 | 0.1760 | 35.3891 | 22.3040 | 15.0805
0.5 | 0.1140 | 0.0719 | 0.0487 | 7.7010 | 4.8537 | 3.2819
UD 1 02603 |0.1642 | 0.1111 | 21.5231 | 13.5650 | 9.1719
1.5 | 0.3312 | 0.2089 |0.1414 |28.4200 | 17.9118 | 12.1108
0.5 | 0.1151 | 0.0727 | 0.0494 | 7.8527 | 4.9562 | 3.3591
SSSS oD 1 |0.2640 | 0.1667 | 0.1131 | 21.9514 | 13.8541 | 9.3895
1.5 | 0.3362 | 0.2123 | 0.1440 | 28.9868 | 18.2943 | 12.3987
0.5 | 0.1130 | 0.0712 | 0.0481 | 7.5545 | 4.7550 | 3.2079
XD 1 ]0.2568 | 0.1617 |0.1092 |21.1093 | 13.2866 | 8.9633
1.5 | 0.3264 | 0.2056 | 0.1388 | 27.8725 | 17.5434 | 11.8349
0.5 | 0.1140 | 0.0700 | 0.0466 | 7.7001 | 4.7124 | 3.1297
VD 1 ]0.2603 | 0.1596 | 0.1061 |21.5221 | 13.1695 | 8.7459
1.5 | 0.3312 | 0.2030 | 0.1350 | 28.4187 | 17.3894 | 11.5482
0.5 | 0.0885 | 0.0558 | 0.0379 | 4.2330 | 2.6681 | 1.8043
Pure Epoxy | 1 | 0.1874 | 0.1182 | 0.0801 | 12.9068 | 8.1348 | 5.5004
1.5 |0.2237 | 0.1411 | 0.0956 | 16.1611 | 10.1857 | 6.8871
0.5 | 0.0710 | 0.0448 | 0.0304 | 3.3995 | 2.1427 | 1.4489
UD 1101504 | 0.0949 |0.0623 |10.3651 | 6.5228 | 4.4173
1.5 | 0.1796 | 0.1133 | 0.0767 | 12.9785 | 8.1799 | 5.5309
0.5 | 0.0714 | 0.0451 | 0.0307 | 3.4647 | 2.1868 | 1.4823
CCCC oD 1101519 | 0.0960 | 0.0652 | 10.5692 | 6.6706 | 4.5211
1.5 | 0.1816 | 0.1147 | 0.0779 | 13.2348 | 8.3529 | 5.6613
0.5 | 0.0707 | 0.0446 | 0.0302 | 3.3364 | 2.1002 | 1.4170
XD 1 ]0.1490 | 0.0939 | 0.0635 | 10.1679 | 6.4000 | 4.3177
1.5 | 0.1778 | 0.1120 | 0.0757 | 12.7309 | 8.0132 | 5.4060
0.5 | 0.0710 | 0.0437 | 0.0291 | 3.3993 | 2.0805 | 1.3819
VD 101504 | 0.0923 | 0.0615 | 10.3646 | 6.3426 | 4.2124
1.5 | 0.1796 | 0.1102 | 0.0734 | 12.9779 | 7.9416 | 5.2743

2,0)/h of the rGO-Epoxy FG-NC plate, A, = 1%,

272

and S # 0 cases, respectively. Besides, dispersion patterns VD and OD have the
most and least effects, respectively. It should be noted that, when the homogene-
ity parameter (8 is ignored, the XD dispersed pattern gives the greatest effect.
Table 4 gives the non-dimensional central deflection of the square plate under
concentrated force pg = 0.1N at the centre with a = b = 10h for the various
material length scale parameter to thickness ratio ¢/h, boundary conditions,
and the filler/matrix type. Filler dimensions are L, = 2.5 um, W, = 1.5 um,
t, = 1.5nm for G, and L, = W, = 1 um, t, = 1nm for GO, rGO, and Ag/rGO.
According to the presented results, the presence of dispersed phase G and GO in
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TABLE 4. Central deflection w = w(%,2,0)/h of the NC plate, A, = 1%, 8 =0, a = b = 10h,

UD.
B.C. Matrix Filler t/h
0.05 0.2 0.4 0.6 0.8 1

Pure Epoxy 3747e-6 | 3712e-5 | 7061e-5 | 8967e-5 | 1051le-4 | 1208e-4
G 1019¢-6 | 1009¢-5 | 1917e-5 | 2434e-5 | 2852¢-5 | 3278¢-5
Epoxy | GO 29266-6 | 2898¢-6 | 5512e-5 | 6998¢-5 | 8202e-5 | 9425e-5
rGO 3012e-6 | 2982e-5 | 5671e-5 | 7200e-5 | 8438e-5 | 9697e-5
Ag/rGO | 3017e-6 | 2987e-5 | 5680e-5 | T211e-5 | 8452¢-5 | 9712e-5
SSSS Pure CU 9065¢-8 | 8981e-7 | 1708¢-6 | 2169e-6 | 2543e-6 | 2921e-6
G 58556-8 | 5767e-7 | 1091e-6 | 1383e-6 | 1619e-6 | 1861e-6
cu | GO 8795¢-8 | 8697¢-7 | 1651e-6 | 2095¢-6 | 2455¢-6 | 2822¢-6
rGO 9022¢-8 | 8910e-7 | 1690e-6 | 2143e-6 | 2511e-6 | 2885¢-6

Ag/rGO | 9030e-8 | 8917e-7 | 1691e-6 | 2145e-6 | 2513e-6 | 2888e-6
Pure Epoxy 2109e-6 | 2046e-5 | 3987e-5 | 5324e-5 | 6613e-5 | 8044e-5

G 5734e-7 | 5557e-6 | 1082e-5 | 1445e-5 | 1795e-5 | 2183e-5

Epoxy | GO 1647e-6 | 1597e-5 | 3112¢-5 | 4155¢-5 | 5161e-5 | 6278e-5

rGO 1695e-6 | 1643e-5 | 3202e-5 | 4275¢-5 | 5310e-5 | 6459¢-5

Ag/rGO | 1698e-6 | 1646e-5 | 3207e-5 | 4282e-5 | 5318e-5 | 6469e-5

CCCC Pure CU 5103e-8 | 4949¢-7 | 9647c-7 | 1288¢-6 | 1600e-6 | 1946e-6
G 3288¢-8 | 3173¢-7 | 6155e-7 | 8205e-7 | 1019e-6 | 1239¢-6

cu | GO 4947e-8 | 4790e-7 | 9321e-7 | 1244e-6 | 1545¢-6 | 1879¢-6

rGO 5072e-8 | 4905¢-7 | 9535e-7 | 1272e-6 | 1578¢-6 | 1922¢-6

Ag/rGO | 5076e-8 | 4910e-7 | 9544e-7 | 1273e-6 | 1581e-6 | 1923e-6

the epoxy matrix reduce the deflection w = w/h by 73% and 22%, respectively,
while for rGO and Ag/rGO, deflection reaches about 20 %. These effects in
the copper matrix are equal to 35%, 3%, 1.2%, and 1% for G, GO, rGO, and
Ag/rGO, respectively, which is to be expected, due to the higher mechanical
properties of copper. The reduction of the oxidized form effect (also modified
versions of graphene) is noticeable compared to the original graphene.

Instead, some critical issues such as agglomeration, interface bonding, and
structural defects in the upgraded version of graphene are significantly less than
graphene. Thus, the reduction of the critical issues concerning the fabrication
procedure leads to the accurate results of the analytical model in accordance
with the experimental results.

The results also are illustrated in Fig. 3. Figure 3a shows central deflection
w=w(%, %, 0)/h in the form of Wy, /+GO-Epoxy/ WEpoxy Versus the material length
scale parameter-to-thickness ratio ¢/h for various dispersion patterns. As can be
seen in Fig. 3a, XD and OD patterns have the greatest and least effects on NC
plate deflection, respectively. However, with the increase of the material length
scale parameter-to-thickness ratio, the results of the four patterns converge with
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Fia. 3. Effect of various parameters on the deflection of NC plates under concentrated force:

a) central deflection ratio Wag/:Go-Epoxy/WEpoxy versus material length scale parameter to
thickness ratio ¢/h with A, = 1%, b) central deflection ratio Wag/rGO-Epoxy/WEpoxy Versus

weight fraction A, with ¢/h=0.5 (W =w/h, 8 =0, L, = W, = 1pm, ¢, = 1nm,
a =b=10h, SSSS).

each other. In fact, when the small-scale effect becomes noticeable, there is no
significant difference between various dispersion patterns concerning bending
deflection. Figure 3b depicts the central deflection ratio wag/rqo-Epoxy /WEpoxy
versus weight fraction A, for various dispersion patterns. As expected, increasing
the filler weight fraction up to 1% leads to an impressive decrease in NC plate
deflection, which is the most severe decrease in the XD pattern.

In Table 5 non-dimensional central deflections of the square Ag/rGO-Epoxy
NC plate under the concentrated load 0.1 N at centre, uniform distributed load
with intensity Py = 3.23 x 10%(¢/h)? N/m?, and sinusoidal distributed load with
Py = 7.97 x 10%(:/h)? N/m? for the various material length scale parameter to

thickness ratio ¢/h are investigated.
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FiG. 4. Effect of various parameters on the deflection of NC plates under concentrated force:

a) central deflection ratio WrGo-Epoxy/WEpoxy versus grading index 8 with ¢/h = 0.5,
b) central deflection w:co-Epoxy Versus fm, ¢) central deflection ratio Wag/rco-Epoxy/ WEpoxy

versus L, /t, for various W,./L, with ¢/h =0.1 (@ = w/h, Ay = 1%, n, = nm = 2,

L, =W, =1um, t, = 1nm, a = b = 10h, SSSS).
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TABLE 5. Central deflection @ = w(%, 2,0)/h of the Ag/rGO-Epoxy NC plate, 8 =0,
A =1%,UD, L, =W, = 1um, t, = 1nm, a = b = 10h.

t/h

0.05 0.2 0.4 0.6 0.8 1

SSSS | 3017¢-6 | 2987¢-5 | 5680e-5 | 7211e-5 | 84526-5 | 9712e-5
CCCC | 1698¢-6 | 16460-5 | 3207e-5 | 4282¢-5 | 5318¢-5 | 6469¢-5
SCSC | 20360-6 | 1991e-5 | 3858¢-5 | 5089¢-5 | 6235¢-5 | 74850-5
CCOCF | 1928¢-6 | 1881c-5 | 36860-5 | 4946¢-5 | 6161c-5 | 7499¢-5
SSSS | 9490e-7 | 9653¢-6 | 1815e-5 | 22345 | 2517e-5 | 2772e-5
Uniform CCCC | 3316e-7 | 3369¢-6 | 65396-6 | 8531e-6 | 10325 | 12250-5
distributed "G AGG [ 48750-7 | 4958¢-6 | 9551e-6 | 1228¢-5 | 1461c-5 | 1704e-5
CCCF | 48260-7 | 4984¢-6 | 10156-5 | 1394e-5 | 1753¢-5 | 21350-5
SSSS | 1482e-6 | 1509¢-5 | 2842e-5 | 3507e-5 | 3966¢-5 | 4386¢-5
Sinusoidal | CCCC | 5855¢-7 | 5961e-6 | 115765 | 1507e-5 | 1820e-5 | 2158¢-5
distributed  ["gE5C [ 8139e-7 | 8289e-6 | 1597e-5 | 2055¢-5 | 2445¢-5 | 2853¢-5
CCCF | 7719e-7 | 79150-6 | 1579e-5 | 21225 | 26276-5 | 3165¢-5

Load B.C.

Concentrated

The effect of the grading index S on FG-NC plate deflection is shown in
Figs. 4a and 4b. Central deflection ratios w,Go-Epoxy/WEpoxy Of the NC plate
for various dispersion patterns are presented. Interestingly, with the increase of
the grading index (greater than 0.2), pattern VD takes the place of the pattern
XD as the most effective dispersion scheme in reducing deflection. Figure 4b
illustrates the effect of filler dimensions on the NC plate deflection.

6.3. Free vibration analysis

Table 6 gives results for the non-dimensional natural frequency of a sim-
ply supported homogeneous square plate for various length-to-thickness ratios
a/h and material length scale parameter-to-thickness ratio ¢/h. Material prop-
erties are E,, = 14.4GPa, p,, = 12200kg/m?3, v,, = 0.38. The material length
scale parameter ¢ is considered equal to 8.8 um. m, n are the vibrational half-
waves number of plates in the directions x and y, respectively. The results show
that non-dimensional natural frequency @ = w(a?/h)\/pm/Em has an inverse
relation with the length-to-thickness ratio a/h and a direct relation with the
material length scale parameter-to-thickness ratio ¢/h, so non-dimensional nat-
ural frequency decreases/increases with the increase of length-to-thickness ra-
tio/material length scale parameter-to-thickness ratio. Comparing present re-
sults with the other works including M-CST /C-CST-based classical plate theory
(CPT) and the first-order shear deformation plate theory (FSDT) shows a good
agreement between data.



122 M. Z. ROSHANBAKHSH, S. M. TAVAKKOLI

TABLE 6. Non-dimensional natural frequency @ = w(a®/h)\/pm/Em of plate, 8 =0, A, =0,
t = 8.8um, a =b, SSSS.

m=1n=1 \ m=1n=2
t=0 |¢/h=02|¢/h=04]| ¢t=0 |t/h=02]|t/h=04
M-CST CPT |74] | 5.9671 7.5366 10.9718 | 14.2717 | 18.0253 24.2521
5 | M-CST FSDT |74] | 5.3871 | 6.7996 9.6451 | 11.6717 | 14.8649 20.8542
Present 5.3855 | 6.8078 9.6698 | 11.6514 | 14.8924 20.8856
C-CST CPT [43| 6.1103 | 7.7174 11.2349 | 15.0936 | 19.0634 27.7525
10 | C-CST FSDT [43] | 5.9301 | 7.4807 10.7848 | 14.0893 | 17.7680 25.3657
Present 5.9292 | 7.4776 10.7931 | 14.0802 | 17.7733 25.3958
M-CST CPT |74] |6.1477 | 7.7646 11.3037 | 15.3223 | 19.3522 28.1730
20 | M-CST FSDT |74] | 6.0997 | 7.7009 11.1801 | 15.0319 | 18.9688 27.4365
Present 6.0991 7.6945 11.1794 | 15.0268 | 18.9618 27.4431

a/h Theories

In Table 7, the non-dimensional natural frequencies @ = wh/pp/Ep, of the
rGO-Epoxy NC plate are presented for various length-to-thickness ratio a/h, dis-
persion patterns, mode number, and boundary conditions. The rGO properties
are considered E, = 250 GPa, p, = 2250kg/m?, v, = 0.165, L, = W, = 1 um,
tr = 1nm [51]. The results reveal that the largest and lowest values for natural

TABLE 7. Non-dimensional natural frequency @ = why/pm/En of rtGO-Epoxy NC plate,
AN =1%, L, =W, =1um, t, =1lnm 8 =0,:=0,a=0b.

B.C. Dispersion Method m=1n=1 m=1,n=2
pattern a/h=10 |a/h=20 |a/h=10 |a/h=20
UD M-CST |51] | 0.0688 0.0177 0.1638 0.0436
Present 0.0688 0.0177 0.1637 0.0435
OD M-CST [51] | 0.0641 0.0164 0.1537 0.0405
Present 0.0640 0.0164 0.1531 0.0405
SSSS XD M-CST |51] | 0.0730 0.0188 0.1723 0.0463
Present 0.0732 0.0188 0.1733 0.0464
VD M-CST [51] | 0.0679 0.0174 0.1618 0.0430
Present 0.0688 0.0177 0.1637 0.0435
UD M-CST [51] | 0.1186 0.0317 0.2286 0.0635
Present 0.1172 0.0316 0.2228 0.0631
oD M-CST [51] | 0.1116 0.0295 0.2168 0.0593
Present 0.1099 0.0294 0.2104 0.0588
CCCC XD M-CST [51] | 0.1243 0.0337 0.2376 0.0673
Present 0.1237 0.0337 0.2338 0.0670
VD M-CST [51] | 0.1172 0.0313 0.2262 0.0628
Present 0.1172 0.0316 0.2228 0.0631
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frequencies were achieved by XD and OD dispersion patterns, respectively. Note
that, the obtained frequencies by the XD dispersion pattern are about 14% higher
than the OD frequencies.

TABLE 8. Non-dimensional frequency @ = why/pm/Em of the NC plate, A, = 1%, 8 =0,
a=b=10h, XD.

B.C. | Matrix Filler L/h
0.05 0.2 0.4 0.6 0.8 1
Pure Epoxy 0.0594 | 0.0746 | 0.1087 | 0.1469 |0.1844 | 0.2194
G 0.1313 | 0.1568 |0.2176 |0.2878 |0.3579 | 0.4238
GO 0.0703 | 0.0866 |0.1242 |0.1667 | 0.2087 | 0.2479
Epoxy | .qo 0.0690 | 0.0852 |0.1224 |0.1644 |0.2059 | 0.2446
4SS Ag/rGO | 0.0689 | 0.0851 |0.1223 |0.1643 |0.2057 |0.2444
Pure CU 0.0594 | 0.0746 |0.1087 |0.1469 |0.1844 |0.2194
G 0.0824 | 0.1009 |0.1439 |0.1926 |0.2408 | 0.2859
GO 0.0612 | 0.0766 |0.1116 |0.1507 |0.1891 | 0.2250
Cy rGO 0.0605 | 0.0760 |0.1109 |0.1500 |0.1883 | 0.2241
Ag/rGO | 0.0604 | 0.0759 |0.1109 |0.1499 |0.1882 |0.2240
Pure Epoxy 0.1017 |0.1276 |0.1831 |0.2399 |0.2900 | 0.3316
ccoc G 0.2202 | 0.2640 |0.3620 |0.4663 |0.5602 | 0.6393
GO 0.1195 | 0.1475 |0.2084 |0.2717 |0.3277 |0.3745
Epoxy | qo 0.1174 |0.1452 |0.2055 | 0.2680 | 0.3234 | 0.3695
Ag/rGO | 0.1173 | 0.1451 |0.2053 | 0.2678 |0.3231 | 0.3692
Pure CU 0.1017 |0.1276 |0.1831 |0.2399 |0.2900 | 0.3316
G 0.1398 |0.1716 |0.2411 |0.3136 |0.3780 | 0.4318
GO 0.1046 | 0.1311 |0.1878 |0.2461 |0.2974 | 0.3400
Cy rGO 0.1035 | 0.1301 |0.1869 |0.2451 |0.2963 | 0.3387
Ag/rGO | 0.1034 | 0.1300 | 0.1868 |0.2449 |0.2961 |0.3385

Non-dimensional natural frequencies w = why/pm/En, of a square plate with
a = b = 10h for various material length scale parameters-to-thickness ratios
t/h, boundary conditions, and filler/matrix types are presented in Table 8. XD
dispersion pattern and weight fraction A, = 1% are considered. Filler dimensions
are L, = 2.5um, W, = 1.5um, ¢t, = 1.5nm for G, and L, = W, = 1l um, t, =
1 nm for GO, rGO, and Ag/rGO. The presence of filler with excellent mechanical
properties embedded in the matrix can lead to a significant increase in stiffness.

As a result, the addition of reinforcements G and GO in the epoxy matrix
with ¢/h = 0.05 increases the natural frequency w by 120% and 18%, respectively,
while for rGO and Ag/rGO this value is about 16 %. Interestingly, the increase
in the material length scale parameter-to-thickness ratio ¢/h leads to a decrease
in the intensity of this effect, so that the frequency enhancement of the NC plate
with ¢/h = 1 are 93%, 13%, and 11% for G, GO, and rGO/Ag-rGO, respec-
tively. On the other hand, the reduction of the effect of oxidized and modified



124 M. Z. ROSHANBAKHSH, S. M. TAVAKKOLI

versions of graphene is significantly noticeable compared to graphene. However,
the correction of some undesirable issues such as reducing agglomeration, refin-
ing filler-matrix bonding, and reducing structural defects are among the benefits
of modified and oxidized forms. The presence of filler in the copper matrix with
t/h = 0.05 leads to 39%, 3%, and 1.8% increases in the non-dimensional natural
frequency of the NC plate for G, GO, and rGO/Ag-rGO, respectively. These
values for ¢/h = 1 are reduced to 30%, 2.5%, and 1.5%, respectively. Similar
to static bending, it is natural to reduce the filler effect on the metal matrix
due to its higher mechanical properties. Along with this character of metals, as
mentioned earlier, some issues such as difficulty in achieving proper dispersion
of filler in metal matrix and the presence of structural defects have led to less

attention to metal matrix composites MMC.
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Fia. 5. Effect of various parameters on the non-dimensional natural frequency
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The results also are depicted in Figs. 5 to 7. Figure ba shows the non-
dimensional natural frequency @ = wh+/pp,/Ep, of a simply supported NC plate
in the form of Wy /rGO-Epoxy/@Epoxy Versus material length scale parameter-to-
thickness ratio ¢/h for various dispersion patterns. Filler dimensions L, = W, =
1wm, t, = 1nm and weight fraction A, = 1% are considered. The length-to-
thickness ratio is equal to 10.

As can be seen in Fig. 5a, XD and OD patterns have the largest and small-
est effect on NC plate deflection, respectively. However, with the increase of the
material length scale parameter to the thickness ratio, the results of the four
patterns converge with each other. In this sense, when the small-scale effect be-
comes obvious, there is no weighty difference between various dispersion patterns
concerning natural frequency. Figure 5b illustrates the non-dimensional natu-

ral frequency ratio wag/rGO-Epoxy/@Epoxy Versus weight fraction A, for various
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Fic. 6. Effect of various grading index 8 on the non-dimensional natural frequency ratio

wrGO-Epoxy/@Epoxy of FG-NC plates (L/h = 05, w = wh\/pm/Em, Ny = Ny, = 2, Ar = 1%’
L, =W, =1um, t, = Inm, a = b = 10h, SSSS), b) effect of various grading index 8., on the

natural frequency wrGo-gpoxy (MHz).
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dispersion patterns. As can be seen, increasing the filler weight fraction (up to 1%)
leads to impressive growth in the NC plate natural frequency, especially in the
XD pattern. Furthermore, OD and VD patterns produce almost identical effects
in the homogeneous case (5 = 0).

The effect of grading index 8 on the natural frequency w = why/pp,/En, of
the simply supported FG-NC plate is presented in Figs. 6a and 6b. The material
length scale parameter-to-thickness ratio ¢/h and weight fraction A, are 0.5
and 1%, respectively. The length to thickness ratio a/h is equal to 10. Filler
dimensions are L, = W, = 1lum, t, = 1nm. The non-dimensional natural
frequency ratio Wrqo-Epoxy/@Epoxy Of the NC plate for various dispersion patterns
is depicted. Interestingly, increasing the grading index leads to an altered rank
between the patterns VD and XD as the most effective dispersion scheme in

increasing natural frequency.
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Fia. 7. Effect of various length to thickness ratio of filler L, /t, on the natural frequency
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Fia. 8. The first six free vibration mode shapes of Ag/rGO-Epoxy NC plates (¢/h = 0.1,
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Figure 7 illustrates the effect of filler dimensions on the NC plate natu-
ral frequencies. As demonstrated in the figure, the natural frequency increases
by increasing the length-to-thickness ratio of filler L, /t,. However, natural fre-
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quency enhancement intensity decreases gradually, so that for L, /t, greater than
0.001, it almost tends to a constant value. In addition, the increasing effect of the
width-to-length ratio of the filler W,./L, on the natural frequency also decreases
gradually with the increase of the L, /t, and the results converge to each other
for various W,./L,. The first six free vibration mode shapes of Ag/rGO-Epoxy
NC plates with UD dispersion patterns are presented in Fig. 8.

6.4. Buckling analysis

The non-dimensional biaxial buckling factors Ae = Aera?/Eph3 of rGO/Epoxy
NC plate for various length-to-thickness a/h, dispersion patterns, and boundary
conditions are presented in Table 9. The rGO properties are considered E, =
250 GPa, p, = 2250kg/m3, v, = 0.165, L, = W, = 1um, t,, = 1nm [51]. The
material length scale parameter ¢ is equal to zero. Comparing present results
with the other works shows a good agreement between data.

The results show that the non-dimensional buckling factor has a direct re-
lation with the length-to-thickness ratio a/h. Moreover, the largest and lowest
values for the buckling factor are captured by XD and OD dispersion patterns,
respectively. The XD buckling factor of the NC plate with a/h = 5 is about 25%
higher than the OD buckling factor which reaches about 32% for a/h = 100.

TABLE 9. Non-dimensional biaxial buckling factor Aer = Aera®/Emh® of rGO/Epoxy NC
plate (N =N =1, N3, =0, A, =1%, L, =W, = lum, t, = lnm, =0, t =0, a = b).

B.C. Dispersion Method a/h
pattern 5 10 20 100

D M-CST [51] | 2.0908 | 2.4432 | 2.5509 -
Present | 2.0904 | 2.4441 | 2.5521 | 2.5888

oD M-CST [51] | 1.8689 | 2.1233 | 2.1983 -
Present | 1.8463 | 2.1168 | 2.1974 | 2.2245

5588 <D M-CST [51] | 2.2760 | 2.7484 | 2.8993 -
Present | 2.3216 | 2.7662 | 2.9053 | 2.9530

VD M-CST [51] - - - -
Present | 2.0904 | 2.4440 | 2.5521 | 2.5888

UD M-CST [51] | 4.2150 | 5.8283 | 6.6041 -
Present | 4.1032 | 5.8448 | 6.5786 | 6.8643

oD M-CST [51] | 3.9259 | 5.2378 | 5.7183 -
Present | 3.7309 | 5.1277 | 5.6867 | 5.8994

CCeC T [ M-CST [p1] | 4.3882 | 6.5401 | 7.4628 -
Present | 4.4380 | 6.5336 | 7.4597 | 7.8285

VD M-CST [51] | 4.1459 | 5.7925 | 6.4360 -
Present 4.1034 5.8448 6.5785 6.8642
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TABLE 10. Non-dimensional biaxial buckling factor Aer = Acraz/Emh%f the NC plate
(N =NJ=1,N2, =0, A, =1%, B =0, a = b= 10h, XD).

B.C. | Matrix Filler L/h
0.05 0.2 0.4 0.6 0.8 1
Pure Epoxy 1.8161 |2.8553 |6.0622 |11.0479 | 17.3655 |24.5297
G 8.8402 |12.6082 | 24.2365 | 42.3331 | 65.2974 | 91.3860
- GO 2.5545 |3.8793 | 7.9673 |14.3248 |22.3844 |31.5291
POXY 1 1GO 2.4583 |3.7468 |7.7228 |13.9059 | 21.7440 |30.6368
9SSS Ag/rGO 2.4531 |3.7396 |7.7093 |13.8828 |21.7086 |30.5873
Pure CU 1.8161 |2.8553 |6.0622 |11.0479 | 17.3655 |24.5297
G 3.2443 |4.8679 |9.8777 |17.6695 | 27.5486 | 38.7598
U GO 1.8952 |2.9713 |6.2920 |11.4546 | 17.9967 | 25.4156
rGO 1.8255 |2.8791 |6.1299 |11.1839 | 17.5877 |24.8492
Ag/rGO 1.8234 |2.8760 |6.1239 |11.1733 | 17.5713 | 24.8263
Pure Epoxy 4.3714 |6.8458 |14.0938 | 24.3452 | 35.8652 | 47.3359
G 20.6364 | 29.4026 | 55.1565 | 91.8372 | 133.4110 | 175.1777
. GO 6.0904 |9.2216 |18.4024 | 31.4162 | 46.0797 | 60.7208
POXY 1 1GO 5.8673 |8.9152 |17.8508 | 30.5140 | 44.7780 |59.0159
Islelele Ag/rGO 5.8553 | 8.8985 | 17.8205 | 30.4640 | 44.7058 |58.9213
Pure CU 4.3714 |6.8458 |14.0938 | 24.3452 | 35.8652 | 47.3359
G 7.7087 | 11.5356 | 22.7600 | 38.6829 | 56.6415 | 74.5915
U GO 45587 |7.1195 |14.6211 | 25.2328 | 37.1599 | 49.0384
rGO 4.3980 |6.9080 |14.2597 | 24.6555 | 36.3350 |47.9617
Ag/rGO 4.3930 |6.9008 |14.2460 | 24.6325 | 36.3015 | 47.9176

Table 10 gives the non-dimensional biaxial buckling factor Aer = Aepa? / E,.h3
of a square plate with a = 10h for various material length scale parameter to
thickness ratio ¢/h, boundary conditions, and filler/matrix type. XD dispersion
pattern and weight fraction A, = 1% are considered. Filler dimensions are L, =
2.5um, W, = 1.5um, t, = 1.5nm for G, and L, = W,, = 1 um, ¢, = 1nm for
GO, rGO, and Ag/rGO.

The obtained results reveal that the addition of dispersed phases G and GO
in the epoxy matrix with ¢/h = 0.05 increases the buckling factor A.. by 380%
and 40%, respectively, while for rGO and Ag/rGO, the buckling factor reaches
about 35 %. Moreover, the increase in the material length scale parameter-to-
thickness ratio ¢/h leads to a decrease in the intensity of this effect, so that the
buckling factor enhancement of the NC plate with ¢/h = 1 is 270%, 28%, and
24% for G, GO, and rGO/Ag-rGO, respectively. Similar to static bending and
free vibration, the CU matrix gets a lower level of filler enhancement effect in
the buckling case. In this regard, the presence of filler in the copper matrix with
t/h = 0.05 leads to 78%, 4%, and 0.5% increases in the non-dimensional buckling
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factor of the NC plate for G, GO, and rGO/Ag-rGO, respectively. These values
for «/h =1 are reached to 58%, 3.5%, and 0.9%, respectively.

Figures 9 to 11 depict the results. Figure 9a illustrates the non-dimensional
biaxial buckling factor Aer = Aera®/Eph? of a simply supported NC plate in
the form of S‘Ag/rGO—Epoxy/ E\Epoxy versus material length scale parameter-to-
thickness ratio ¢/h for various dispersion patterns. The length-to-thickness ratio
is equal to 10. L, = W, = 1 um, t, = 1nm and weight fraction A, = 1% are
adopted. As can be seen, the greatest and least effects on the NC plate buckling
factor are captured by XD and OD patterns, respectively. However, the results
of the four patterns meet each other with the increase of the material length

scale parameter-to-thickness ratio.
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Fia. 9. Effect of various parameters on the non-dimensional biaxial buckling factor
Xer = Aera®/Emh® of NC plates: a) buckling factor ratio ;\Ag/rGO_EPOXy/;\Epoxy versus
material length scale parameter to thickness ratio ¢/h with A, = 1%, b) buckling factor ratio
X\Ag/rGO_EPOXy/S\Epox}, versus weight fraction A,with ¢/h =0.5 (8 =0, L, = W, = 1 um,
t, = 1nm, a = b = 10h, SSSS).
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This means a noticeable small-scale effect leads to negligible differences be-
tween various dispersion patterns concerning buckling factors similar to bend-
ing and free vibration cases. Figure 9b provides a good picture of the non-
dimensional biaxial buckling factor ratio S\Ag/rGO_EpOXY / S\Epoxy versus weight
fraction A, for various dispersion patterns. As anticipated, increasing the filler
weight fraction up to 1% leads to a remarkable increase in the NC plate buckling
factor, which is the most severe increase in the XD pattern. Also, OD and VD
patterns yield almost the same effects for g = 0.

The effect of grading index 8 on the non-dimensional biaxial buckling factor
Aer = Aer@? ) Eph? of a simply supported FG-NC plate is presented in Figs. 10a
and 10b. The length-to-thickness ratio a/h is equal to 10. The material length
scale parameter-to-thickness ratio ¢/h and weight fraction A, are set to be 0.5

a) 1.32
13+
'g;
&
1< 1.28
~
126+
o)
4
|<
1.24 8
1.22 D_-\-_—--?- --------- ?-_-—_\—_—_D _________ - ]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
B
b) : : :
80~ —AFZO, ﬂy:ﬂmzo, Pure Epoxy

'D_Ar:O’ ﬂr=0, Pure FG-Epoxy

_<>_Ar= 1%, 4 =43 =0,UD, rGO-Epoxy

+ A,-:l%’ B=4,, UD, FG-rGO-Epoxy
+AI‘=1%, ﬂr=2ﬂm, UD, FG-rGO-Epoxy
->-A =1%, =44 , UD, FG-rGO-Epoxy

(o)
(=]
T

/\rGOAEpoxy
I
S
T

FiG. 10. a) Effect of various grading index 8 on the buckling factor ratio ArGO-Epoxy / AEpoxy
of NC plates (Aer = Aera®/Emh®, t/h = 0.5, np = nm = 2, A = 1%, L, = W, = 1 um,
t, = 1nm, a = b = 10h, SSSS), b) effect of various grading index S, on the buckling factor

)\rGO—Epoxy .
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and 1%, respectively. Filler dimensions are L, = W, = 1 um, ¢, = 1 nm. The non-
dimensional buckling factor ratio S\rGO—Epoxy / S\Epoxy of the NC plate for various
dispersion patterns is painted. Remarkably, with the increase of the grading
index 3, the pattern VD takes the most effective dispersion scheme in increasing
the buckling factor.
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(N2 =NJ =1, N2, =0), Aer = Aera®/Enh®, =0, t/h =0.1, A, = 1%, a = b = 10h,
SSSS).

Figure 11 illuminates the effect of filler sizes on the NC plate buckling factor.
It is clear that the buckling factor increases by increasing the length-to-thickness
ratio of the filler L, /t,. However, buckling factor enhancement intensity decreases
gradually. Moreover, the increasing effect of the width-to-length ratio of filler
W, /L, on the buckling factor also decreases gradually with the increase of the
L, /t,, and the results meet each other for various W,./L,..
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6.5. Optimum parameters

In Table 11, the values of four variables that correspond to the lowest mass of
the FG-NC plate model are presented. The lower bound of the first frequency is
equal to 0.05 and 10 MH. The graphene-based fillers have a thickness in the nano-
range, which can indicate the nano-scale character of the length scale parameter
of nanocomposites. However, in most of the works available in the literature, the
value of 17.6 um [66] is used. In this respect, for comparison, two nano values
related to the flake, and the platelet have been considered for the characteristic
length scale parameter ¢, which are equal to 5nm and 25 nm, respectively.

TABLE 11. The values of four variables correspond to the lowest mass of the FG-NC plate
(epoxy, UD, a = b, SSSS).

. Minimum @
L Filler | A, =¢/h A Jé] ne =a/h mass [ke] wf [MH]

GO 0.7651 | 0.0110 | 1.0518 | 6.4757 3.49e-14 0.05

17.6 pm rGO 0.7652 | 0.0110 | 1.0505 | 6.4682 3.47e-14 0.05
GO 0.9669 0.0159 | 1.0394 5.1833 8.72e-15 10

rGO 0.9704 | 0.0160 | 1.0402 | 5.1621 8.51e-15 10

95 nm GO 0.7663 | 0.0110 | 1.1139 | 6.8176 1.63e-25 10
rGO 0.7657 0.0109 | 1.1085 6.7789 1.61e-25 10

5nm GO 0.6637 | 0.0109 | 1.1315 | 6.9148 4.84e-28 10
rGO 0.6693 | 0.0109 | 1.1344 | 6.9160 4.68e-28 10

7. Conclusion

In this paper, a size-dependent model of functionally graded nanocomposite
(FG-NC) Mindlin plates based on the consistent couple stress theory (C-CST)
and a non-classical finite element is presented. A unified form is developed for
the homogenization of the small-scale heterogeneities of FG-NC plates. In this
respect, the Halpin—Tsai model is enriched to capture simultaneously graded be-
haviour of the elastic properties of the matrix and reinforcement as well as the
distribution of the dispersed phases through the plate thickness. A four-node
rectangular element is adopted by using the Hermitian approach and in the con-
text of a sub-parametric model to capture the C1 continuity requirements of the
couple stress theory. The presented element has 20-DOF at each node, reduced to
12-DOF in a bending mode without stretching deformation. An improved fam-
ily of graphene including graphene oxide (GO), reduced graphene oxide (rGO),
and silver-reduced graphene oxide (Ag-rGO) nano-hybrid are considered. The
size-dependent optimization problem is implemented to minimize the FG-NC
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plate weight under the frequency constraint, and the corresponding material
and geometrical properties of the plate are extracted. The presented model was
successfully applied to the bending, free vibration, and buckling analysis of the
functionally graded nanocomposite plates, and a set of interesting results are
provided that could be a benchmark for future studies.

Appendix A: The strain/curvature-displacement matrix

The strain/curvature-displacement matrix can have the following forms:

(A1)
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ox 0 ox 0 ox 0 ox 0
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| dy Ox Oy ox oy ox Oy ox
1 1 1 1
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1
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where ¢ = 1,2, 3, 4.
Appendix B: The pertinent parameters of the global stiffness matrix £,
mass matrix M, force vector F, and geometrical stiffness matrix £,
The pertinent parameters are calculated as follows:
k=ki+ks+kw+ki, k= +E, k=kE"+Ek?

b= [ B DiBiae. k- [BID.B.00
Q Q

kkb—/BkaDkakb dQ,  ky, = /BlisTDlisBlis ds2,

Q Q
(B.1) W= [ B DyByan, K, = [ BT DLEY, i
Q Q

K = / BT B0, KO = / B}, DYLBY, d,

Q Q
f:/NTde+/NTEdF—/NdeF,
Q I I
(B.2) M = /NTMlNdQ, M = /NTmONdQ,
Q Q

k!;l? = /B}l\;NBNdQ, BN = [BNl BN2 BN3 BN4]7
Q

(B.3) By, =

ON;
N0 0

[ 00 %0 5 00]

or
ON; ON;
N g0 2N

where p=[p 0 0|7, £ = [t, 0 0], m = [0 my m,)7T.
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