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This paper presents an analysis of the bending process in thermoplastic
sheets reinforced with unidirectional continuous fibers. To capture the material’s vis-
coelastic response during the bending process, a novel viscoelastic model is described
based on the concept of transient reversible networks. The model incorporates kine-
matic constraints of material incompressibility and fiber inextensibility during de-
formation of the composite sheets. An analytical solution is derived, enabling the
determination of the deformed geometry and bending forces as time-dependent func-
tions of the bending angle, the deformation rate, and material parameters. The
model’s performance is evaluated through comparisons with existing experimental
data and a prior viscous model for bending process at various deformation rates.
This comparison aids in identifying the material parameters and characteristic time
associated with the transient reversible networks.
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1. Introduction

The formability of thermoplastic sheets reinforced with continuous
fibers plays a critical role in their design and manufacturing processes. During
the forming process, the thermoplastic matrix undergoes a melting transition,
allowing the reinforcing fibers to conform to the die geometry. Subsequently,
after shaping the composite sheet to the desired geometry, it is cooled to solidify
the melted resin and fix the fibers in their deformed configuration before load
removal. This process significantly influences the forming force required, which
depends on factors such as the magnitude and rate of deformation, as well as
the processing temperature [1, 2]. Unfortunately, forming processes can result
in various defects in the final parts, including sheet wrinkling, fiber buckling,
fiber rupture, and excessive resin percolation [3–6]. Optimizing processing pa-
rameters is essential to achieve the desired final shape while minimizing defects.
Previous studies have investigated the underlying causes of these defects through
experimental investigations [2–4] and numerical analyses [7–9].
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Some anisotropic viscous constitutive laws have been presented to model the
response of the continuous fiber-reinforced thermoplastic sheets at the form-
ing temperature [10, 11]. The high ratio of bulk to shear viscosity in melted
resin is given [12], the deformation of the composite sheets is assumed to be
incompressible. Additionally, the presence of continuous fibers within the melted
resin significantly restricts deformation and introduces inextensible directions
throughout the composite [3, 13]. The micromechanical technique has been em-
ployed to characterize the rheological properties of viscous fluids reinforced with
unidirectional continuous fibers [14]. This study demonstrates that the response
of such composites in transverse intraply shear and squeeze flows depends on
both the deformation history and the rate of deformation.

Several numerical procedures have been developed to analyze the sheet form-
ing process using viscous models while incorporating the relevant kinematic
constraints [15–18]. However, these models exhibit limitations due to the de-
pendence of the viscous stress tensor on the rate-of-deformation tensor. This
dependence leads to a discontinuous jump in the calculated forming force at
the initiation of deformation for a constant deformation rate. Additionally, vis-
cous models predict a zero-force required to maintain a constant deformation in
thermoplastic composites, which contradicts experimental observations. Experi-
mental studies have demonstrated that for thermoplastic composites undergoing
the constant rate deformation, the forming force continuously increases from
zero at the initial instant [19–21]. Furthermore, the force required to maintain
a constant deformation exhibits stress relaxation, continuously decaying to a spe-
cific value over a sufficiently long time after the forming process ceases [19–21].
Therefore, viscous models are demonstrably incapable of accurately predicting
the mechanical response of reinforced thermoplastic sheets at the forming tem-
perature. While some prior research has explored using an equivalent elastic
material for the melted resin [22, 23], these models can account for the depen-
dence of the stress field on the amount of deformation. However, they fail to cap-
ture the rate-dependent response and stress relaxation observed in experimental
studies [19–21]. A viscoelastic model is thus the ideal choice for simulating the
forming process of thermoplastic composites at elevated temperatures.

Finite strain anisotropic viscoelastic constitutive laws can handle large de-
formations and the nonlinear material behavior more effectively. This leads to
more accurate predictions of the final part shape, residual stresses, and poten-
tial defects, improving the process design and part quality. Viscoelastic mod-
els can capture the time-dependent behavior of thermoplastic composites at el-
evated temperatures, crucial for accurately predicting the material’s response
during the thermoforming process. Guzman-Maldonado et al. [24] proposed
a visco-hyperelastic model to simulate the thermoforming process of thermoplas-
tic prepregs. This model combines the advantages of both viscoelastic and hy-
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perelastic models, the latter of which can capture large deformations and nonlin-
ear elastic behavior. Their viscoelastic models have primarily focused on intra-ply
shear deformation, neglecting the significant viscoelastic effects observed in inter-
ply shear deformations, such as those encountered in the bending forming of lam-
inated composite sheets [19–21]. Sánchez et al. [25] used a generalized Maxwell
model to simulate the thermoforming process of polystyrene. The generalized
Maxwell model is a viscoelastic model consisting of a series of spring-dashpot
elements, each representing a different relaxation time. The relaxation functions
were directly applied on two linear elastic constants including shear module and
bulk module. Holzapfel and Gasser [26] developed a viscoelastic model for
fiber-reinforced composites at finite strains. Previous studies have modeled the
relaxation and/or creep response of individual composite constituents and assem-
bled their contributions to obtain a global response. Dorr et al. [28] modeled the
bending process of thermoplastic materials reinforced with unidirectional fibers
or woven/bidirectional fabric using a viscoelastic constitutive law. They assumed
an additive decomposition of stress tensor into a purely elastic stress and the in-
ternal viscoelastic stress defined by the generalized Maxwell or the Voigt–Kelvin
approach. A hypoelastic constitutive law was used to model the purely elastic
stress. The combination of hypoelastic model with Voigt–Kelvin model captures
the immediate elastic response and delayed viscous response, while its combina-
tion with a generalized Maxwell model accounts for multiple relaxation times.
Chen et al. [27] proposed a viscoelastic model for fiber-reinforced composites
at finite deformations. They employed a homogenization framework to decom-
pose the Helmholtz free energy density function of each constituent (matrix and
fiber) into volumetric, isochoric, and dissipative parts. An effective evolution rule
was developed to govern the time-dependent, viscous behavior of each compos-
ite phase. The long-term (purely elastic) behaviors of both the matrix and the
fibers were characterized by the incompressible neo-Hookean model. The elastic
free energy density functions of the matrix and the fibers were derived based on
a specific multiplicative decomposition of the deformation gradient. Nedjar [29]
presented an anisotropic viscoelastic constitutive law that treats the matrix and
the fibers separately. The relaxation and/or creep response of each constituent
was derived based on a multiplicative viscoelastic split of the deformation gra-
dient, combined with the assumption of viscoelastic potentials. This approach
allows for the accurate representation of the time-dependent, anisotropic be-
havior of the composite material under various loading conditions. Tagiltsev
et al. [30] used a multiplicative approach to simulate the viscoelastic properties
of a composite material. They introduced a new family of hyperelastic potentials
to account for local compressive fiber buckling. This approach allows for the ac-
curate representation of the nonlinear, time-dependent behavior of the composite
material under complex loading conditions.
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This research presents an anisotropic viscoelastic model, based on the Tran-
sient Network Theory (TNT), to analyze the mechanical response of unidirec-
tional continuous fiber-reinforced thermoplastic sheets during bending, incorpo-
rating both intra-ply and inter-ply shear deformations. Unlike previous studies
that treated the matrix and fibers separately, a continuum approach is employed
to model the composite media, neglecting porosity formation and resin perco-
lation. The composite sheet is modeled as a transversely isotropic viscoelastic
material, constrained by fiber inextensibility and material incompressibility. The
presence of active links in the reversible networks necessitates a reinforced hy-
perelastic material model within the continuum approach to accommodate finite
deformations. The hyperelastic model is more suitable than the previous linear
elastic model for simulating the large deformations experienced by composite
laminates during thermoforming processes. The strain energy function for the
hyperelastic material is formulated, adhering to principles of objectivity and
material symmetry, and satisfying conditions of zero energy and stress in the
reference configuration, while enforcing fiber inextensibility and material incom-
pressibility. This research develops a general viscoelastic model that avoids mul-
tiplicative decomposition of the deformation gradient tensor and additive decom-
position of the stress tensor. This model, within the TNT framework, evaluates
both relaxation and creep responses using a single continuum approach.

The thermoforming simulation of composite sheets requires accurate mate-
rial properties in different forming parameters. Some experimental procedures
have been developed to determine material properties in different deformation
modes, temperatures and deformation rates [31, 32]. Out-of-plane bending is one
of the deformation mechanisms that govern the appearance of wrinkles during
the thermoforming process [33]. Therefore, simulation of the bending process of
reinforced thermoplastic laminates provides information for predominate mate-
rial characteristics. Previous research works simulated the bending process to
determine the parameters of a viscous model, while the present research work
focuses on the determination of the material parameter in a finite viscoelastic
model by analyzing the bending process of thermoplastic composites at elevated
temperatures.

The viscoelastic model developed in the present research work is employed to
analyze bending and derive an analytical solution. This solution determines the
deformed geometry and forces required to bend the composite sheets and main-
tain a specific deformation state. These forces are presented as time-dependent
functions of the bending angle, rate of deformation, and material parameters.
The model not only describes the material response during bending but also cap-
tures the stress relaxation phenomenon for a prescribed deformed configuration.
By comparing the analytical solution with previous experimental results [19],
this work establishes a method to determine the material parameters and char-
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acteristic time associated with the transient reversible networks. Furthermore,
the viscoelastic model is evaluated for bending processes with varying deforma-
tion rates. The analytical results are compared with both prior experimental
data and predictions from the aforementioned viscous model.

2. Viscoelastic model

Drawing upon the theory of transient reversible networks [23, 34], this work
proposes an incompressible anisotropic viscoelastic model for thermoplastic
sheets reinforced with continuous inextensible fibers. The polymer resin is mod-
eled as a network of interconnected molecular chains, as illustrated in Fig. 1.
An active chain, defined as a chain with both ends attached to distinct junc-
tions, is represented by a nonlinear elastic spring. The rupture of a bond at
a chain terminus is considered equivalent to chain scission. When a dangling
chain (a chain with one free end shown in Fig. 1) encounters and captures
a neighboring junction, a new adaptive link is formed. It is postulated that the
characteristic timescale of the system, which is the time scale associated with
the overall network dynamics, significantly exceeds the relaxation time of stress
within a broken bond. Consequently, a dangling chain is assumed to be fully
relaxed before capturing a new junction.

Fig. 1. Schematic illustration of the deformation-induced rupture and reformation of
transient links in a polymer network.
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The molten thermoplastic resin within the composite material is conceptu-
alized as a network comprised of K distinct types of links. The number of each
link type is determined with respect to a unit volume of the reference configura-
tion. Initially, at time t = 0, the network is composed of Yk(0, 0) active links of
type k. The number of initial links existing at time t is designated by Yk(t, 0).
Some active links never break during deformation process of viscoelastic mate-
rials. The permanent links of type k are quantified by χkYk(0, 0), in which χk is
the relative fraction of permanent links. In addition to, Yk(t, τ) is the number of
links arising before time instant τ and existing at time t. The number of links
arisen within the interval [τ, τ + dτ ] and existing at an instant t is determined
by (∂Yk(t, τ)/∂τ)dτ . Hence, the total active links at instant t can be given by

(2.1) Y (t) =
K∑
k=1

[
Yk(t, 0) +

t∫
0

(∂Yk(t, τ)/∂τ)dτ

]
.

This study investigates the application of various interconnection types
within a reversible transient network model. This model aims to capture the
viscoelastic behavior, characterized by complex stress relaxation responses, ob-
served in diverse thermoplastic resins reinforced with continuous fibers. The com-
posite materials are assumed to exhibit non-aging viscoelastic behavior, where
the total number of active links remains constant, and the rate of link refor-
mation is constant. In non-aging materials, the number of broken links depends
on the difference between the current and reformation instants. Consequently,
the functions of Yk(t,0) and ∂Yk(t,τ)/∂τ can be expressed as [35, equations 3.2
and 3.140]:

Yk(t, 0) = Yk(0, 0)[χk + (1− χk) exp(−Γkt)],(2.2)
∂Yk(t, τ)/∂τ = Yk(0, 0)Γk(1− χk) exp[−Γk(t− τ)],(2.3)

where Γk represents the reformation rate of active links.
The strain energy at the current instant is the sum of the stored energy in the

initial active links and the reformed links during the deformation process [36],
namely,

(2.4) w(t) =

K∑
k=1

[
Yk(t, 0)wk(t, 0) +

t∫
0

(∂Yk(t, τ)∂τ)wk(t, τ) dτ

]
.

To assess the response of the network, which consists of multiple active links,
the strain energy stored within all active links at a specific time instant needs
to be determined. Due to the presence of these active links, the composite ma-
terial undergoing finite deformation can be considered a reinforced hyperelastic
material in the continuum approach.
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The strain energy function must satisfy the following criteria: objectivity,
principle of material symmetry, and the conditions of zero energy and zero
stress in the reference configuration. The objectivity condition is satisfied by
expressing the strain energy in terms of the right Cauchy–Green deformation
tensor, which is symmetric and positive definite. Additionally, the material sym-
metry condition necessitates that the function remains invariant under transfor-
mations involving elements of the material symmetry group. The strain energy
function is chosen to be polyconvex. This ensures physically realistic material
responses and guarantees the existence and stability of solutions for boundary
value problems [37–39]. The strain energy function is derived within the context
of the invariant theory, utilizing the structural tensors. It satisfies both polycon-
vexity and coercivity conditions.

A hyperelastic material reinforced with unidirectional continuous fibers can
be described by a strain energy density function, w(F,a), in terms of the defor-
mation gradient tensor, F, and the unit vector, a, along the fiber at the time
of link formation [28]. The fibers are modeled as material lines. This allows us
to determine their current direction using the deformation gradient tensor and
the initial fiber direction. The energy function must satisfy the objectivity con-
dition and the principle of material symmetry. Representing the strain energy as
a function of invariants derived from the right Cauchy–Green deformation tensor,
C = FTF, and the unit vector, inherently ensures that it fulfills both the ob-
jectivity condition and the principle of material symmetry. Based on the theory
of representations for scalar-valued tensor functions [40], the strain energy den-
sity function per unit volume of the reference configuration can be expressed as
wk(I1, I2, I3, I4, I5), where the invariants Ii are expressed as:

I1(t, τ) = tr C(t, τ),(2.5a)

I2(t, τ) = [(tr C(t, τ))2 − tr C2(t, τ)]/2,(2.5b)
I3(t, τ) = det C(t, τ),(2.5c)
I4(t, τ) = C(t, τ) : A(τ),(2.5d)

I5(t, τ) = C2(t, τ) : A(τ),(2.5e)

where A(τ) is a symmetric second order tensor with the components of Aij(τ) =
ai(τ)aj(τ). The definition of polyconvexity necessitates that the invariants con-
sidered as arguments of the strain energy function exhibit convex properties [41].
The convexity of each invariant can be demonstrated by examining the positiv-
ity of the second derivative. Specifically, it can be established that the invariants
I1, I2, I3 and I4 are convex with respect to F, Cof(F), det(F) and F, respec-
tively. However, the invariant I5 is not convex with respect to F [42]. Schröder
et al. [42] derived a convex mixed invariant using the Cayley–Hamilton theorem
as follows:
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(2.6) K5(t, τ) = Cof(C(t, τ)) : A(τ) = I5(t, τ)− I4(t, τ)I1(t, τ) + I2(t, τ).

Thus, the polyconvexity condition is met by expressing the strain energy as
a function of invariants I1, I2, I3, I4,K5, denoted as wk(I1, I2, I3, I4,K5). A poly-
convex function can be decomposed into isotropic and anisotropic parts under
different loading conditions [41, 43, 44], i.e.,

wk(t, τ) = ŵiso
k (I1(t, τ), I2(t, τ), I3(t, τ))(2.7)

+ ŵaniso
k (I3(t, τ), I4(t, τ),K5(t, τ)).

Due to the kinematical constraints of material incompressibility and fiber
inextensibility, the invariants I3 and I4 take on unit values, respectively. Conse-
quently, the strain energy function simplifies to:

wk(t, τ) = ŵiso
k (I1(t, τ), I2(t, τ), 1) + ŵaniso

k (1, 1,K5(t, τ))(2.8)

= wiso
k (I1(t, τ), I2(t, τ)) + waniso

k (K5(t, τ)).

For a reversible network containing K distinct types of links, the total strain
energy can be expressed as:

(2.9) w(t) =

K∑
k=1

{
Yk(t,0)[w

iso
k (I1(t,0), I2(t,0)) + waniso

k (K5(t,0))]

+

t∫
0

(∂Yk(t,τ)/∂τ)[wiso
k (I1(t,τ), I2(t,τ)) + waniso

k (K5(t,τ))] dτ

}
.

The kinematical constraints can be incorporated into the strain energy func-
tion using Lagrange multipliers, namely,

(2.10) wc(t) = Y(0,0)[−p(I3(t,0) − 1) + T (I4(t,0) − 1)] + w(t),

where the functions p(t) and T (t) are Lagrange multipliers introduced to enforce
the kinematical constraints of material incompressibility (I3 = 1) and fiber inex-
tensibility (I4 = 1), respectively. The derivative of the strain energy with respect
to the right Cauchy–Green deformation tensor yields the second Piola–Kirchhoff
stress, i.e.,

(2.11) S = 2
∂w

∂C
= 2Y(0,0)[−pC−1+TA]

+
K∑
k=1

{
Yk(t,0)

[
∂wiso

k

∂I1
I+

∂wiso
k

∂I2
(I1I−C)+

∂waniso
k

∂K5
(K5C

−1−C−1AC−1)

]

+

t∫
0

(∂Yk(t,τ)∂τ)

[
∂wiso

k

∂I1
I+

∂wiso
k

∂I2
(I1I−C)+

∂waniso
k

∂K5
(K5C

−1−C−1AC−1)

]
dτ

}
.
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The energy-free and stress-free conditions are expressed as follows:

wiso
k (3, 3) = waniso

k (1) = 0,(2.12)

p(0) =
∂wiso

k (3, 3)

∂I1
+2

∂wiso
k (3, 3)

∂I2
+
∂waniso

k (1)

∂K5
,(2.13)

T (0) =
∂waniso

k (1)

∂K5
.(2.14)

The isotropic part of strain energy is described using the Mooney–Rivlin model,
while the corresponding anisotropic part is expressed as a linear model, namely,

wiso
k (I1(t, τ), I2(t, τ)) =

βk1

Y (0, 0)
(I1(t, τ)− 3) +

βk2

Y (0, 0)
(I2(t, τ)− 3),(2.15)

waniso
k (K5(t, τ)) =

βk5

Y (0, 0)
(K5(t, τ)− 1),(2.16)

where Y(0,0) is the number of the total active links and βki are the hyperelastic
material parameters of the k-th kind active link. The considered models fulfill
both the energy-free and stress-free conditions. Upon combining Eqs. (2.9), (2.15)
and (2.16), the strain energy function can be expressed as:

w(t) =

K∑
k=1

Yk(0, 0)

Y (0, 0)

{
[χk + (1− χk) exp(−Γkt)](2.17)

× [βk1(I1(t, 0)− 3) + βk2(I2(t, 0)− 3) + βk5(K5(t, 0)− 1)]

+

t∫
0

(Γk(1− χk) exp[−Γk(t− τ)])

× [βk1(I1(t, τ)− 3) + βk2(I2(t, τ)− 3) + βk5(K5(t, τ)− 1)] dτ

}
.

3. Bending mechanism

A flat thermoplastic composite sheet is bent using a novel vee-bending mech-
anism developed in [19, 20]. The mechanism shown in Fig. 2a consists of a pair
of rectangular plates hinged at the center of a loading roller (punch). These
plates are supported on idler rollers with negligible friction. As the punch dis-
places vertically, the hinged plates rotate, pulling the composite sheet over the
punch surface and inducing longitudinal shear deformation between layers. The
experiment is conducted in a temperature-controlled environment, ensuring the
composite sheet reaches equilibrium temperature before deformation. The punch
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(a)

(b)

Fig. 2. Vee-bending mechanism (a) initial layout configuration (b) one half deformed
configuration.

speed is maintained constant throughout the test, and the applied load is mea-
sured using a load cell. The bending process is terminated when the supporting
plates reach a 45◦ rotation, corresponding to a 90◦ bending angle of the sample.
The load cell also measures the force required to maintain this deformed geom-
etry over time. To determine the net bending force, the force required to rotate
the supporting plates and the sample weight are subtracted from the total mea-
sured load. A detailed description of the experimental procedure can be found
in [19, 20]. The experimental results presented here serve to validate the analyt-
ical solution derived for the bending process.

Due to the high aspect ratio (width-to-thickness) of the bending sample,
a state of plane strain deformation is assumed. The experimental samples pos-
sess unidirectional continuous fibers aligned parallel to the plane of deformation.
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Previous research [45] has demonstrated that planar deformations in incompress-
ible materials reinforced with inextensible fibers parallel to the deformation plane
exhibit no thickness reduction. Consequently, intra-ply shear [46] becomes the
dominant deformation mechanism in this configuration.

4. Bending deformation analysis

Figure 2b illustrates the deformation of the composite sample during the
bending process. The reference configuration of the sample occupies the spatial
domain defined by −L ≤ X ≤ L, ≤ Y ≤ H, and −B ≤ Z ≤ B, where 2L, 2B,
and H represent the length, width, and thickness of the sample, respectively.
Experimental studies [18, 19] have demonstrated negligible deformation in the
Z-direction (out-of-plane) during bending. Due to the symmetry of the bending
process about the punch centerline, analysis focuses on one half of the planar
deformation. As depicted in Fig. 2b, the deformed geometry of the sample can
be divided into two regions:
• Region 1 (ABEF) located at ≤ X ≤ (r + Y )φ(t) ≤ Y ≤ H.
• Region 2 (BCDE) located at (r + Y )φ(t) ≤ X ≤ L ≤ Y ≤ H.

The deformation of the two regions can be expressed as:

Region 1:

{
x(X,Y,t) = (r + Y ) sin X

r+Y ,

y(X,Y,t) = d− r + (r + Y ) cos X
r+Y ,

(4.1a)

Region 2:


x(X,Y,t) = (r + Y ) sinφ(t) + [X − (r + Y )φ(t)] cosφ(t),

y(X,Y,t) = d− r + (r + Y ) cosφ(t)

−[X − (r + Y )φ(t)] sinφ(t).

(4.1b)

Given the geometric parameters r, a, and w depicted in Fig. 2, and the punch
displacement d, the kinematical analysis establishes a relationship between the
rotation angle (φ) of the supporting plates and the corresponding punch dis-
placement (d) as follows:

(4.2) (r + a+H)[1− secφ(t)] + w tanφ(t)− d = 0.

The invariants can be expressed using Eqs. (2.5), (2.6) and (4.1), i.e.,

Region 1: I1(t) − 3 = I2(t) − 3 = K5(t) − 1 =

(
X

r + Y

)2

,(4.3a)

Region 2: I1(t) − 3 = I2(t) − 3 = K5(t) − 1 = φ2
(t).(4.3b)

Equations (4.3) define the invariants of links that have been active since the
initial time instant. To determine the invariants of links that reform at a spe-
cific instant, denoted by τ , and exist at a later time t, the right Cauchy–Green
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deformation tensor is required. At a specific point within the material at time t,
the components of the deformation gradient tensor are expressed as:

(4.4)
∂xi(t)

∂xj(τ)
=
∂xi(t)

∂Xk

∂Xk

∂xj(τ)
,

Xk and xi(t) denote the Cartesian components of the material position vector in
the reference configuration and the current configuration, respectively. Equation
(4.4) can be written as:

(4.5) F(t,τ) = F(t)F
−1
(τ).

According to Eq. (4.5), the deformation gradient of a link at the reformation
time is the identity tensor (F(τ,τ) = I), signifying no deformation. Subsequently,
the total deformation gradient characterizes the link’s deformation after the ref-
ormation time, which depends on both the total state and the configuration
at the reformation time. Within the TNT framework, the links exhibit elastic
behavior both before rupture and after reformation. Using Eq. (4.5), the right
Cauchy–Green tensor at the current geometry for links reformed at instant τ
can be expressed as:

(4.6) C(t,τ) = FT
(t,τ)F(t,τ) = F−T(τ) FT

(t)F(t)F
−1
(τ) = F−T(τ) C(t)F

−1
(τ).

Based on the positions of a material point at the current and reformation
instants (τ and t, respectively), three distinct cases are identified to determine
the invariants of the right Cauchy–Green deformation tensor. These cases are
categorized based on the point’s location in two designated regions:

1. Domain 0 ≤ X ≤ (r + Y )φ(τ): Points remain within region 1 at both the
reformation and current instants

(4.7a) I1(t,τ) − 3 = I2(t,τ) − 3 = I5(t,τ) − 1 = 0.

2. Domain (r + Y )φ(τ) ≤ X ≤ (r + Y )φ(t): Points initially located in region 2
at the reformation instant (τ) move into region 1 at the current time (t)

(4.7b) I1(t,τ) − 3 = I2(t,τ) − 3 = K5(t,τ) − 1 =

[
X − (r + Y )φ(τ)

r + Y

]2

.

3. Domain (r + Y )φ(t) ≤ X ≤ L: Points reside within the region 2 at both
the reformation and current instants

(4.7c) I1(t,τ) − 3 = I2(t,τ) − 3 = K5(t,τ) − 1 = (φ(t) − φ(τ))
2.

Within these domains, the Y -coordinate varies across the thickness of the
sheet, i.e., 0 ≤ Y ≤ H.
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5. Bending force

The principle of minimum total potential energy states that a system in
equilibrium will adopt a configuration that minimizes its total potential en-
ergy functional, denoted by Π(t). This functional represents the difference be-
tween the Helmholtz free energy (Ψ) and the work of external loads (W ext), i.e.
Π(t) = Ψ(t) −W ext(t). Following this principle, the displacement field, u(x, t),
at a specific time instant (t) minimizes the total potential energy functional
within the admissible set of displacement fields. This implies that any small,
admissible variation of the displacement field, denoted by δu(x, t), will result
in a non-negative change in the total potential energy functional for isother-
mal deformation of viscoelastic media. Mathematically, this variation can be
expressed as:

(5.1) δΠ(t) = δΨ(t)− δW ext(t).

In the isothermal deformation of a viscoelastic medium, the increment of free
energy is demonstrably equal to the increment of strain energy (∆Ψ = ∆W ) as
shown in [35, Eq. 1.313]. Neglecting the friction force between the supporting
plates and the sample surface in the bending process, the work done by the
external load is equal to the product of the punch force, P (t), and the variation of
the punch displacement, δd. The Euler–Lagrange equation, a necessary condition
for minimizing a functional, states that the functional will be minimized when
the variation of the functional with respect to a specific variable (in our case, the
displacement field) vanishes, namely,

(5.2) P (t)δd =
∂W (t)

∂ui(t)
δui.

Here, W represents the total strain energy, which is obtained by substituting
Eqs. (4.1) and (4.7) into Eq. (2.17):

W (t) =

∫
Ω0

w(t) dΩ0(5.3)

= B

K∑
k=1

3β̄k

{
[χk + (1− χk) exp(−Γkt)]

×
H∫

0

[ (r+Y )φ(t)∫
0

(
X

r + Y

)2

dX +

L∫
(r+Y )φ(t)

φ2
(t) dX

]
dY
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+

t∫
0

(Γk(1− χk) exp[−Γk(t− τ)t])

×
H∫

0

[ (r+Y )φ(t)∫
(r+Y )φ(τ)

(
X − (r + Y )φ(t)

r + Y

)2

dX

+

L∫
(r+Y )φ(t)

(φ(t) − φ(τ))
2 dX

]
dY dτ

}
,

where β̄k is equal to Yk(0,0)(βk1 + βk2 + βk3)//3Y(0,0). The evaluation of integrals
yields:

1

B

∫
Ω0

w(t) dΩ0 =

K∑
k=1

3β̄k

{
[χk+(1−χk) exp(−Γkt)]φ

2
(t)

1

3
[3L−(H+2r)φ(t)](5.4)

+

t∫
0

(Γk(1−χk) exp[−Γk(t−τ)])
1

6
(φ(t)−φ(τ))

2

×[6L−(H+2r)(2φ(t)+φ(τ))] dτ

}
.

Consequently, the variation of the total strain energy can be expressed as:

δW (t)

BH
=

{ K∑
k=1

3β̄k

{
[χk + (1− χk) exp(−Γkt)][2L− (H + 2r)φ(t)]φ(t)(5.5)

+

t∫
0

(Γk(1− χk) exp[−Γk(t− τ)])

× [2L− (H + 2r)φ(t)](φ(t)− φ(τ)) dτ

}}
δφ.

Here, δφ represents the virtual rotation of the supporting plates induced by
the virtual displacement of the punch. This relationship can be expressed using
Eq. (4.2) as:

(5.6) δφ(t) =
cos2 φ(t)

w − (r + a+H) sinφ(t)
δd.

By combining Eqs. (5.2), (5.5) and (5.6), the expression for the time-dependent
bending force, P (t), is obtained as follows:
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P (t)

BH
=

2[2L− (H + 2r)φ(t)] cos2 φ(t)

w − (r + a+H) sinφ(t)
(5.7)

×
{ K∑
k=1

3β̄k

{
[χk + (1− χk) exp(−Γkt)]φ(t)

+

t∫
0

(Γk(1− χk) exp[−Γk(t− τ)])(φ(t)− φ(τ)) dτ

}}
.

6. Results and discussion

This work presents a model of the bending process, offering a convenient
procedure to determine the parameters required to describe the viscoelastic re-
sponse of thermoplastic sheets reinforced with continuous fibers at the forming
temperature. The model expresses the force required to bend the composite
sample as a function of the bending angle and rate of deformation as well as
the material parameters. Furthermore, it predicts the force required to maintain
a specific bending angle in the composite sample. To validate the model’s predic-
tive capabilities, the predicted bending force is compared to previously obtained
experimental measurements at various time instances. This comparison allows
for the determination of the viscoelastic material parameters.

The force required to maintain a 90◦ bending angle after a sufficiently long
time can be determined using Eq. (5.7) by letting time t approach positive in-
finity. This limit yields:

(6.1) P∞ = lim
t→∞

P(t) = K∞BH

K∑
k=1

3β̄kχk.

Here, K∞ is a dimensionless geometric constant defined by:

(6.2) K∞ =
π

8

8L− π(H + 2r)

2w −
√

2(r + a+H)
.

By combining Eqs. (5.7) and (6.1), we can obtain an expression for the bending
force, P (t), as follows:

(6.3)
P (t)

P∞
=

2 cos2 φ(t)[2L− (H + 2r)φ(t)]

K∞[w − (r + a+H) sinφ(t)]

{
φ(t)

[
1 +

K∑
k=1

Ck exp(−Γkt)

]

+

t∫
0

K∑
k=1

(ΓkCk exp[−Γk(t− τ)])(φ(t)− φ(τ)) dτ

}
,
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where Ck are given by

(6.4) Ck =

∑K
k=1 β̄k(1− χk)∑K
m=1 β̄mχm

, k = {1, 2, . . . ,K}.

Figure 3 presents the experimentally measured bending force on a compos-
ite sample reported in [19]. The sample was bent at a constant velocity of
500 mm/min to a 90◦ angle and then held at that deformation until the load
reached a steady-state value. The test was conducted under isothermal condi-
tions at 180◦C. The figure also compares the predicted bending loads from both
a previous viscous model and the present viscoelastic model.

Fig. 3. Comparison of analytical functions predicting bending load with the previous
experimental results [20] in different time, forming speed = 500 mm/min;

temperature = 180◦C.

The experimental data were obtained using Plytron samples, which are poly-
propylene/glass fiber composites with a nominal fiber volume fraction of 35%.
Pre-consolidated laminates with a stacking sequence of [0]8 were cut into sheets
with 140 mm in length and 40 mm in width. The unidirectional continuous glass
fibers were aligned parallel to the sample length.

The anisotropic viscoelastic model utilizes a simplified network structure,
where each junction is connected by a single type of active links (K = 1):

(6.5)
P (t)

P∞
=

2 cos2 φ(t)[2L− (H + 2r)φ(t)]

K∞[w − (r + a+H) sinφ(t)]

×
{
φ(t)[1 + C1 exp(−Γ1t)] +

t∫
0

Γ1C1 exp[−Γ1(t− τ)](φ(t)− φ(τ)) dτ

}
.



Viscoelastic model for bending process. . . 45

Two material parameters including C1 and Γ1 are unknown in the Eq. (6.5)
and the other variables are dependent on the initial dimension of samples (L,H),
the dimension of bending die (r, a, w) and the function of bending angle. Based
on the measured bending force data and the analytical function for P (t)/P∞
(Eq. (6.5)), the material parameters C1 and Γ1 are determined using a least-
squares numerical method, resulting in values of C1 = 6.414 and Γ1 = 5 s−1.
Subsequently, Eq. (6.4) is used to calculate the constants associated with the
active chain as:

(6.6) χ1 =
1

1 + C1
= 0.135.

The constants associated with the active link in the model are determined
based on the experimentally measured forces reported in [18, 19] required to
maintain the deformed geometry after a sufficiently long time. For the specific
experimental setup employed (H = 4 mm, r = a = 16 mm), Eqs. (6.1) and (6.2)
yield:

(6.7) β̄1 =
P∞

3χ1BHK∞
=

8P∞
3πχ1BH

2w −
√

2(r + a+H)

8L− π(H + 2r)
= 5923.61 Pa.

Figure 3 depicts the characteristic behavior of the bending force during the
three-stage test. The load initially increases from zero as the bending angle pro-
gresses, reaching a maximum value before full deformation (90◦) is achieved. This
is followed by a gradual decrease in load as the forming process continues. The
primary mechanism responsible for this load reduction is the snapping of some
active links within the material. While new links may reform during bending,
these reformed links do not exhibit any initial strain.

Upon completion of the 90◦ bending and cessation of punch movement, the
force required to maintain the deformed state decreases. This force quickly
reaches a steady-state value within a short period. The observed load reduc-
tion is attributed to the relaxation of stored strain energy in the snapped active
links. Consequently, the only remaining stored energy in the deformed sample
after a sufficiently long time originates from the permanent links. The final hold-
ing load exhibits a linear dependence on the volume fraction of these permanent
links.

For comparison purposes, the bending load was also calculated using an
anisotropic viscous model. This model incorporates the non-Newtonian viscous
behavior of the melted resin within the composite sheets. As described in [20],
the viscous model relates the load required to deform the thermoplastic compos-
ite sheets to various factors, including viscous material constants, bending angle,
punch velocity and sample geometry. The bending load predicted by the viscous
model, denoted by PVis

(t) , is expressed by the following equation [20]:
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(6.8) PVis
(t) =

2Hmv[L−(r+H)φ(t)] cos4 φ(t)

L−(r+a+H) sinφ(t)

(
cos2 φ(t)

w−(r+a+H) sinφ(t)

)n−1

,

where m and n are material parameters that characterize the non-Newtonian
viscous behavior of the melted resin. Notably, the dependence of stress on the
rate-of-deformation tensor in viscous media leads to a non-zero predicted load at
the initial instant (t = 0), as observed in Fig. 3. This non-linear variation of the
bending load in the viscous model stems from the combined effects of the resin’s
non-Newtonian behavior and the time-dependent strain rate during deforma-
tion. Finally, the viscous model predicts that the load reduces to zero once the
deformation ceases (t→∞).

Previous studies [3, 19] have demonstrated that the response of reinforced
thermoplastic sheets during forming is sensitive to the rate of deformation at the
forming temperature. Selecting an appropriate forming rate can even mitigate
certain defect formations. Figure 4 presents the calculated time variation of the
bending load required to deform the sample at different punch velocities (50, 200,
and 500 mm/min) using the viscoelastic model.

Fig. 4. Net bending load versus time in different forming speed.

To account for the significant difference in bending completion time (tf ) at
these velocities, the bending load variation is plotted against the normalized
time ratio (t/tf ). As the rate of deformation increases, the viscoelastic model
predicts less time available for initial active link breakage, leading to a higher
strain energy storage within the material at higher velocities. Consequently, as
shown in Fig. 4, the bending load increases with an increasing deformation rate.

While strain energy in active links accumulates during deformation, link
breakage triggers relaxation of the stored energy. Notably, at higher deforma-
tion rates, most active links possess higher strain energy due to the reduced
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time for breakage. The subsequent breakage of these high-energy links signifi-
cantly contributes to the observed load reduction. This explains why the load
reduction occurs at a lower relative time, and the bending load reaches its peak
at an earlier normalized time for faster forming processes (Fig. 4).

Finally, after deformation ceases, the bending loads for all velocities converge
towards the same steady-state value. This behavior is attributed to the assump-
tion of a constant number of permanent active links for a given temperature,
regardless of the deformation rate.

Figure 5 compares the viscoelastic model predictions with experimental re-
sults reported in [20] for the variation of bending load as a function of both the
bending angle and the deformation rate. The calculated force for a punch velocity
of 500 mm/min exhibits good agreement with the experimental data. However,
for the 50 mm/min punch velocity, the model underestimates the bending load
compared to the measured values.

Fig. 5. The prediction of present viscoelastic model compared with experimentally measured
bending load [20] in different bending angles and rates of deformation.

Previous experimental studies on the bending process [19, 33] have identified
in-plane buckling of some continuous fibers as a potential contributor to the ob-
served discrepancy. Martin et al. [19] observed that bending samples formed at
a slower speed (50 mm/min) exhibited a greater wrinkling amplitude compared
to those formed at a higher speed (500 mm/min). Since the phenomenon of
buckling is expected to be more pronounced at lower velocities, as it allows more
time for the fibers to buckle before reaching their critical stress. This energy
dissipation due to fiber buckling during deformation would necessitate a higher
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force to bend the sample at lower velocities. Consequently, the buckling effect
could also contribute to the requirement of a greater final force to maintain the
90◦ bending angle in samples deformed at lower velocities.

To achieve a more accurate prediction of the bending force, future research
endeavors could incorporate a post-buckling analysis into the model framework.

7. Conclusions

This work presents a viscoelastic model based on the concept of transient
reversible networks to analyze the bending process of reinforced thermoplastic
sheets at elevated temperatures. The strain energy at the current instant is
the sum of the stored energy in the initial active links and the reformed links
during the deformation process. Due to the presence of these active links, the
composite material undergoing finite deformation can be considered a reinforced
hyperelastic material in the continuum approach. The strain energy function
of hyperelastic satisfies the criteria of objectivity, principle of material symmetry,
the conditions of zero energy and zero stress in the reference configuration. This
model aims to capture the viscoelastic behavior, characterized by complex stress
relaxation responses, observed in diverse thermoplastic resins reinforced with
continuous fibers. This work provides a closed-form solution to evaluate the time-
dependent strain energy and bending force experienced by the thermoplastic
composite sheets during deformation.

Comparison of the model’s predictions with experimental results offers a con-
venient approach to determine the material parameters of the viscoelastic model
at the forming temperature. These parameters include:
• The number of permanent and transient active links per unit volume in

the reference configuration.
• The reformation rate of active links.
• Nonlinear elastic constants of active links.

A key advantage of this model is its ability to capture the stress relaxation phe-
nomenon observed in experimental studies of the forming process, unlike previous
viscous and elastic models. Furthermore, the present formulation allows for the
evaluation of bending load under various bending angles and deformation rates.
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