Self-equilibrated residual based error estimationon 1-irregular meshes in finite elasticity

Downloads

Authors

  • W. Rachowicz Cracow Univesity of Technology, Poland
  • A. Zdunek HB BerRit, Sweden

Abstract

We consider well-established techniques for the residual error estimation of finite element approximations applied to problems in finite elasticity. The element implicit residual method and the method of self-equilibration are applied to nearly incompressible and anisotropic finite strain elastic cases. Our contribution regarding the residual error estimation concerns generalising the approach to 1-irregular meshes. That is, we recover equilibrating element tractions in the presence of compatibility enforcing constraints. The generalisations are illustrated using numerical experiments. The considered variants of the estimators are compared.

Keywords:

error estimation, finite element approximation, finite elasticity, residual, self-equilibrated

References


  1. I. Babuska, B. Andersson, The splitting method as a tool for multiple damage analysis, SIAM Journal on Scientific Computing, 26, 1114–1145, 2005.

  2. B. Andersson, J. Greer Jr., Creation and verification of world’s Largest ki-databases for multiple cracks at countersunk and straight-shank hole in a plate subject to tension, bending and in-loading, [in:] ICAF, 29-th Symposium Nagoya, Japan, 7–9 June, Committee for Aeronautical Fatigue ICAF, 2017.

  3. B. Andersson, U. Falk, I. Babuška, T. Von Petersdorff, Reliable stress and fracture mechanics analysis of complex components using a h-p version of FEM, International Journal for Numerical Methods in Engineering, 38, 13, 2135–2163, 1995.

  4. A. Zdunek, Tests with FALKSOL. A massively parallel multi-level domain decomposing direct solver, Computers and Mathematics with Applications, 97, 207–222, 2021.

  5. B. Andersson, U. Falk, Large-scale FE-analysis for reliable verification and validation: the GDF challenge, Book chapter prepared for the docomentation of the achievements in the EU FP7 MAAXIMIS project, private communication, 20 pp.

  6. MAAXIMUS. More Affordable Aircraft structure through eXtended, Integrated, and Mature nUmerical Sizing, 2008–2016, EU FP-7 Transport, Final report summary, accessed 29.11.2024, https://cordis.europa.eu/docs/results/213/213371/final1-maaximus-final-report-publishable-summary-uploaded.pdf.

  7. A. Eriksson, C. Pacoste, A. Zdunek, Numerical analysis of complex instability behaviour using incremental-iterative strategies, Computer Methods in Applied Mechanics and Engineering, 179, 3, 265–305, 1999.

  8. A. Zdunek, W. Rachowicz, A mixed finite element formulation for compressible finite hyperelasticity with two fibre family reinforcement, Computer Methods in Applied Mechanics and Engineering, 345, 233–262, 2019.

  9. P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Computer Methods in Applied Mechanics and Engineering, 184, 2, 501–520, 2000.

  10. P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, J. Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications, 23, 1, 15–41, 2001

  11. P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing, 32, 2, 136–156, 2006, Parallel Matrix Algorithms and Applications (PMAA’04).

  12. L. Demkowicz, Computing with hp-adaptive finite elements: Volume 1, One and Two Dimensional Elliptic and Maxwell Problems, 1st ed., Chapman and Hall/CRC, New York, 2006.

  13. L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, A. Zdunek, Computing with Hp-Adaptive Finite Elements: Volume 2, Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapman and Hall/CRC, 2008.

  14. M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley and Sons, 2000.

  15. E. Stein, M. Rüter, Finite Element Methods for Elasticity with Error-Controlled Discretization and Model Adaptivity, John Wiley and Sons, pp. 1–96, 2017.

  16. R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, Oxford University Press, 2013.

  17. L. Chamoin, F. Legoll, An introductory review on a posteriori error estimation in finite element computations, Society of Industrial and Applied Mathematics Review, 65, 4, 963–1028, 2023.

  18. A. Ainsworth, J.T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numerische Mathematik, 65 23–50, 1993.

  19. P. Ladevéze, E.A.W. Maunder, A general method for recovering equilibrating element tractions, Computer Methods in Applied Mechanics and Engineering, 137, 2, 111–151, 1996.

  20. W. Rachowicz, Evaluation and comparison of residual error esimates with self-equilibrated fluxes in three dimensions, [in:] ECCM-2001: 2nd European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering, Cracow, Poland, June 26–29, 2001.

  21. A. Zdunek, W. Rachowicz, Application of the hp-adaptive finite element method to the three-dimensiona scattering of time-harmonic electromagnetic waves, [in:] ECCM-2001: 2nd European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering, Cracow, Poland, June 26–29, 2001.

  22. G. Zboiński, Adaptive hpq finite element methods for the analysis of 3D-based models of complex structures. Part 2. A posteriori error estimation, Computer Methods in Applied Mechanics and Engineering, 267, 531–565, 2013.

  23. U. Brink, E. Stein, A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems, Computer Methods in Applied Mechanics and Engineering, 161, 1, 77–101, 1998.

  24. M. Rüter, E. Stein, Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity, Computer Methods in Applied Mechanics and Engineering, 190, 5, 519–541, 2000.

  25. A. Zdunek, W. Rachowicz, A 3-field formulation for strongly transversely isotropic compressible finite hyperelasticity, Computer Methods in Applied Mechanics and Engineering, 315, 478–500, 2017.

  26. L. Demkowicz, J.T. Oden, T. Strouboulis, Adaptive finite elements for flow problems with moving boundaries. Part I: Variational principles and a posteriori estimates, Computer Methods in Applied Mechanics and Engineering, 46, 2, 217–251, 1984.

  27. A. Ainsworth, J.T. Oden, A posteriori error estimators for second order elliptic systems. Part 2. An optimal order process for calculating self-equilibrating fluxes, Computers and Mathematics with Applications, 26, 75–87, 1993.

  28. J. Badger, S. Henneking, S. Petrides, L. Demkowicz, Scalable DPG multigrid solver for Helmholtz problems: A study on convergence, Computers and Mathematics with Applications, 148, 81–92, 2023.

  29. M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis, Computer Methods in Applied Mechanics and Engineering, 142, 1, 1–88, 1997.

  30. R.J. Flory, Thermodynamic relations for highly elastic materials, Transactions of the Faraday Society, 57, 829–838, 1961.

  31. J.C. Simo, R.L. Taylor, K.S. Pister, Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Computer Methods in Applied Mechanics and Engineering, 51, 1, 177–208, 1985.

  32. I. Babuška, W.C. Rheinbolt, Error estimates for adaptive finite element computations, Society of Industrial and Applied Mathematics Journal on Numerical Analysis, 15, 4, 736–754, 1978.

  33. L. Demkowicz, T.J. Oden, W. Rachowicz, O. Hardy, Toward a universal h-p adaptive finite element strategy, Part 1. Constrained approximation and data structure, Computer Methods in Applied Mechanics and Engineering, 77, 79–112, 1989.

  34. R.E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Mathematical Computation, 44, 283–301, 1985.

  35. D. Balzani, P. Neff, J. Schröder, G.A. Holzapfel, A polyconvex framework for soft biological tissues, adjustment to experimental data, International Journal of Solids and Structures, 43, 6052–6070, 2006.

  36. J.C. Simo, K.S. Pister, Remarks on rate constitutive equations for finite deformation, Computer Methods in Applied Mechanics and Engineering, 46, 201–215, 1984.

  37. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing Company, 1978.